Hi guys! Welcome back to another resource. I hope everyone enjoyed Fall Break and got caught up on rest! The semester is flying by and will be done before you know it, so keep up the hard work and finish strong! This is your weekly reminder that I hold weekly group tutoring sessions on Thursdays from 5:15—6:15 pm in room 75 in the basement of Sid Rich. Sign up to join the session here: https://baylor.edu/tutoring. I would love to see you there! Let’s jump in!

Keywords: DNA Structure, Nucleotides, Base Pairing, Semiconservative Replication

Topic of the Week: Basic Structure of DNA

DNA is the *genetic material* that contains all of the information about an individual. The structure of DNA is fascinating!

- DNA is a **polymer of nucleotides**
- Each nucleotide contains a nitrogenous base, pentose deoxyribose sugar, and phosphate group
- A molecule of DNA is structured in a **double helix**
- The strands in a molecule of DNA run **antiparallel**
 - This means that they run in **opposite directions**
- There are **four types** of nitrogenous bases: adenine, guanine, thymine, and cytosine (abbreviated A, G, T, and C)
 - Adenine in one strand will pair with thymine in another strand through **2 hydrogen bonds**
 - Guanine in one strand will pair with cytosine in another strand through **3 hydrogen bonds**

All diagrams, tables, and external information is property of Pearson Campbell Biology 11th edition, unless otherwise specified.
Highlight #1: Structure of One STRAND

Here is a great diagram of what a portion of one DNA strand will look like:

Things to note about this photo:

1. Notice how the 5’ end and the 3’ end are on opposite sides. This terminology refers to the phosphate group being attached to the 5’ carbon of the sugar of the top nucleotide.
2. Notice how the phosphate groups are on the outside of the strand and that they have a negative charge. This will be important later in DNA packaging.
3. Notice the structure of the nucleotides and how they stack. The nitrogenous bases are on the inside of the strand so they will be able to pair with their complementary nitrogenous base on another strand to form a complete DNA molecule.
Highlight #2: Structure of One MOLECULE

Here is a diagram of what a portion of a complete DNA molecule looks like:

Things to note about this photo:
1. Notice how the bases pair in the inside of the molecule.
2. Notice how the backbone of the molecule is called a **sugar-phosphate backbone**. This is because the phosphate and the sugar are found on the outside of the molecule.
3. Notice how this completed strand is actually in the form of a **double helix**!

![DNA structure diagram]

Highlight #3: Models of Replication

One of the foundational properties of DNA is its **ability to replicate**. This comes from the **complementarity of its strands**.

Each strand has the information needed to construct another strand!

There have been several theories to just exactly how DNA replicates. The **three basic models** are:
1. **Conservative model**: the two parent strands act as templates for new strands but then reconnect and restore the original helix.
2. **Semiconservative model**: the two parents strands of the original molecule separate and serve as templates for new strands. The parent strands remain part of the new molecule.
3. **Dispersive model**: the new strands contain mixtures of old and new strands.

All diagrams, tables, and external information is property of Pearson Campbell Biology 11th edition, unless otherwise specified.
Here is a photo explaining each of these models:

<table>
<thead>
<tr>
<th>Parent cell</th>
<th>First replication</th>
<th>Second replication</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Conservative model. The two parental strands reassociate after acting as templates for new strands, thus restoring the parental double helix.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b) Semiconservative model. The two strands of the parental molecule separate, and each functions as a template for synthesis of a new, complementary strand.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c) Dispersive model. Each strand of both daughter molecules contains a mixture of old and newly synthesized DNA.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So which model is correct? The **semiconservative model**!
This model says that each strand in the parent DNA molecule will act as a template for the synthesis of a new strand and will remain in the new DNA molecule. After replication, the double helix consists of one old strand and one new strand.
CHECK YOUR LEARNING:
1. A DNA molecule is found to be composed of 30% cytosine bases. What percentage of the strand is made up of adenosine bases?
2. Why is the backbone of the DNA double helix called the sugar phosphate backbone?
3. Which pairing of nucleotides do you think would be most difficult to break apart: A—T or C—G? Why?

THINGS YOU MAY STRUGGLE WITH:
1. Students often struggle with answering the first question I listed in the “check your learning” section above. It is important to note that if there is 30% cytosine, this means there will be 30% guanine. This will make up 60% of the strand, leaving 40% to be made up of A and T. The answer for either A or T is NOT 40%! It is actually 20% because you have to divide the percentage between the two bases.
2. Remember that in semiconservative replication, each parent DNA strand will be part of the newly synthesized DNA molecule.

Answers:
1. 20% adenosine
2. The structure of the nucleotides are arranged so that the sugar and the phosphate portion of the nucleotide are positioned on the outside of the strand.
3. C—G would be hardest to break apart because they are connected through 3 hydrogen bonds as opposed to A—T which are connected through just 2 hydrogen bonds.