
CSI 1401 Week 12 Resources 
by Allen Yan 

 

 Similar to last week’s in-depth focus on strings, CSI 1401 will introduce some advanced 

programming techniques involving lists and dictionaries in Python over the next two weeks. Compared 

to the concept-heavy contents of the earlier weeks, the topics for these two weeks are more about 

memorizing syntax and should be less stressful. You will also find plenty of material that have already 

been introduced in earlier weeks. 

 As a reminder, I will be leading a group tutoring session on CSI 1401 every Wednesday from 7:00 

pm to 8:00 pm (central time). The session will be conducted online via Microsoft Meetings, where I will 

be available to provide interactive help to students. If the above time window does not work for you, or 

if you need additional help, Baylor’s Tutoring Center also provides 1-on-1 online tutoring appointments. 

For more information on signing up for group tutoring or individual tutoring, please visit 

https://www.baylor.edu/tutoring. 

 

Week 12 Important Topics 

Chapter 8 – Lists and Dictionaries 

• Common list operations 

• List methods 

• List slicing 

1. Common list operations 
A list is a container object in Python, where related objects are stored sequentially and labeled by 

indices. Lists are the most commonly-used container types because they are straightforward. Below 

is a table of the most common list operations, where the highlighted rows indicate operations that 

modify a list in-place. Most of the listed operations should be review at this point. 

https://www.baylor.edu/tutoring


 
Image snipped from course zyBooks 

2. List methods 
Similar to strings from last week, Python lists come with a slew of library functions that can make 

your life easier in occasions where they are needed. Once again, it is not as importance to memorize 

the syntax of each of these methods as it is to know that they exist – you can always look up their 

exact syntax as long as you know such a function exists, and most of the time looking up 

documentations is not considered cheating. A brief description of the list methods covered in this 

chapter is listed below. 

• list.append(x) – Add x to the end of the list. Use list.extend() if multiple 

elements are appended. 

• list.extend([x]) – Similar to list.append(), but adds all elements in [x] to list, 

you can pass in a list literal or a list variable to the function. 

• list.insert(i,x) – Inserts x into list before position i. If inserting multiple elements is 

intended, use slice assignment instead. 

• list.remove(x) – Removes first item in list with value x. 

• list.pop() – Removes and returns last item in list. 

• list.pop(i) – Removes and returns i-th item in list. 

• list.sort() – Sorts the items of list in-place. If returning a sorted copy of the list is 

desired, use sorted(list) instead. 

• list.reverse() – Reverses the elements of a list in-place. If returning a reversed copy 

of the list is desired, use list[::-1] slice notation instead. 

• list.index(x) – Returns index of first element in list with value x. 

• list.count(x) – Returns number times value x is in list. 



• all(list) – Returns True if every element in list is True(!= 0), or if list is empty. 

• any(list) – Returns True if any element in list is True. 

• max(list) – Returns the maximum element in list. 

• min(list) – Returns the minimum element in list. 

• sum(list) – Returns the sum of all elements in list. 

The above list of methods are by no means exhaustive. There are tons of other niche list methods in 

Python. If you ever run across an occasion where you want to perform an operation on lists but feel 

like it can be generalized pretty easily, you can try to search up if there is already an existing 

function for it in Python. Chances are, there probably is. This is one of Python’s biggest perks over 

other programming languages – the amount things that is already done for you. 

3. List slicing 
Recall the string slicing notation from last week. We briefly mentioned that the same slicing notation 

also works the same way on Python lists, and here they are. Below is a table of the most-commonly 

used list slicing operations in Python. 

 
Image snipped from course zyBooks 

One thing to keep in mind with list slicing is that all slicing operations return a copy of the sliced 

portion of the list. This is less importance for string slicing because strings are immutable objects in 

Python. But Python lists are mutable, and there are list slicing operations that are made to perform 

in-place modification of lists, those are called slice assignments. Regular slicing and slice assignment 

share almost the exact same syntax, so it is very easy to confuse the two, but it is important to be 

able to distinguish the two, because they are very different operations. See code example below. 

a = [1, 2, 3, 4, 5] 

b = a[0:3]  # normal slicing, returns copy 

print(*a)  # [1, 2, 3, 4, 5] 

print(*b)  # [1, 2, 3] 

 

a[0:3] = [100, 101, 102]  # slice assignment, modifies in-

place 

print(*a)  # [100, 101, 102, 4, 5] 



As you can see, the two slicing operations in the code above had identical syntax, but behaved very 

differently. The first slice returned a copy of the sliced list and assigned it to b, and the second slice 

made available the portion of the original list a for modification. A good rule of thumb to tell regular 

slicing apart from slice assignment is that if slicing happens on the left side of an assignment 

operator, it’s probably slice assignment; if slicing happens on the right side of an assignment 

operator, it’s likely to be regular slicing. 

 

Useful Resources 

• Basic Python Tutorial on GeeksforGeeks: 

https://www.geeksforgeeks.org/python-programming-language/ 

o This page provides links to detailed explanations to many entry-level Python concepts 

along with examples. I encourage taking a look at it if the examples in your textbook 

were not clear enough. 

• Official Python Documentation: 

https://docs.python.org/3/ 

o This may be a bit heavy-handed for a beginner-level programmer since the official 

Python documentation is very thorough and technical. However, learning how to read 

official documentations is crucial to becoming a good programmer, because the official 

documentation contains information on everything you can find about Python 

elsewhere and more. Therefore, I encourage slowly easing yourself into learning how to 

read the official documentation.  

https://www.geeksforgeeks.org/python-programming-language/
https://docs.python.org/3/

