Enantiomers are mirror-image isomers of a molecule whose physical and chemical properties are indistinguishable under normal circumstances. The phenomenon of enantiomeric discrimination, which permits a pair of optical isomers to be distinguished chemically or physically, is an active area of research from a fundamental as well as applied standpoint. Enantiomeric discrimination can be conventionally accomplished chemically with molecules known as chiral auxiliaries, which react or interact with an enantiomeric pair to form products that break the mirror-image symmetry of the enantiomeric pair, resulting in the formation of diastereomeric pairs with distinctly different chemical and physical properties that can be differentiated with ordinary chemical probes like nuclear magnetic resonance. Alternatively, enantiomeric discrimination can be accomplished physically by means of chiroptical techniques such as polarimetry, optical rotatory dispersion, circular dichroism (electronic and vibrational), and Raman optical activity, all of which employ some form of polarized radiation probe. This proposal concerns the study of a new form of enantiomeric discrimination based on Rayleigh light scattering.