Dr. Lorin Swint Matthews

Professor of Physics
Chair of the Department of Physics
Education
- Ph.D. - Physics, Baylor University - 1998
- B.S. - Physics, Baylor University - 1994
Biography
Dr. Matthews grew up in Paris, Texas, and earned her B.S. and Ph.D. degrees from Baylor University. From 1998-2000 she was employed as an engineer at Raytheon Aircraft Integrations Systems, where her main project was vibroacoustics analysis for NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA). In 2000 she returned to Baylor as a lecturer in the Physics Department and Baylor Interdisciplinary Core and Senior Research Scientist with CASPER, and is now a Professor of Physics and Associate Director of CASPER.
Research Interests
Dr. Matthews is engaged in both theoretical and experimental research in dusty plasmas. Dusty plasmas, which consist of micron-sized solid grains immersed in ionized gas, are found in many astrophysical environments. Her research interests include the early stages of planet formation involving the charging and coagulation of dust, planetary ring dynamics, and the self-organization of laboratory dusty plasmas into dust crystals, Coulomb balls, and dust strings. Another area of interest is hypervelocity impact studies, in relation to designing shielding material and dust detectors for space missions.
Theoretical and Experimental Space Physics/CASPER
Theoretical and Experimental Investigations of Complex Plasma, including
- Charging and dynamics of dust in ion flow
- Self Organization and Stability of Dust Structures
- Dust in protoplanetary disks
- Dust charging and transport in lunar environments
- Dust strings and electrorheological fluids
Courses Taught
PHY 1408 - Physics for Natural and Behavior Sciences I
PHY 1409 - Physics for Natural and Behavior Sciences II
PHY 1420 - General Physics I
PHY 1430 - General Physics II
PHY 2360 - Mathematical and Computational Physics
PHY 3320 - Intermediate Classical Mechanics
PHY 3350 - Topics in Astronomy
PHY 4350 - Introduction to Stellar Structure and Evolution
PHY 5320 - Classical Mechanics
PHY 5352 - Plasma Physics
Honors Students
Rahul Banka
Abbie Terrell
Jeremy Smallwood B.S., 2015, Thesis: Photophoresis: A Potential Sorting Mechanism in Protoplanetary Disks
Will Barnes, B.S., 2013, Thesis: Astrophysical Applications of Dusty Plasma Physics
Brandon Doyle, B.S., 2012, Thesis: Experimental Methodology of Dust Aggregates
Eileen Fernandez, B.S., 2009, Thesis: Circumplanetary Dust: The Martian System and Saturn’s F Ring
Graduate Students
Alexandria Mendoza
Katrina Vermillion
Sharmin Ashrafi, Ph.D., 2020, Dissertation: Investigations of the Plasma Conditions in the Sheath Using Dust Grains as Probes
Sina Rostami, M.A., 2020
Chuchu Xiang, Ph.D., 2019, Dissertation: Modeling dust coagulation and chondrule dust rim growth in a protoplanetary disk
Katie Uppfalt, M.S., 2018, Thesis: Environmental Applications of Plasma Physics: Aerosolized Nanoparticle Decontamination using an Inductively Heated Plasma Device
Eva Kostadinova, Ph.D., 2017, (Co-Advisor) Dissertation: Spectral Approach to Transport Problems in Two-Dimensional Disordered Lattices: Physical Interpretation and Applications
Raziyeh Yousefi, Ph.D., 2015, Dissertation: An Investigation of Electrostatic Properties of Dust Grains in a Complex Plasma
Jonathan Perry, M.S., 2012, Thesis: Effect of Microphysical Interactions on Aggregate Morphologies
Qianyu (Theresa) Ma, Ph.D., 2011, Dissertation: Charging of Aggregate Grains in Astrophysical Environments
Post-Doctorate Research Fellows
Dr. Jeremy Smallwood (2021-present)
Dr. Chuchu Xiang (2020-present)
Dr. Victor Land (2008-2012)
Grants Funded
NASA Emerging Worlds (Co-PI) Experimental and numerical study of formation of chondrule dust rims, (January 2021 - December 2023), $587,914NSF (Co-PI) Accretion and early structure of chondrule dust rims, (September 2020 - August 2023),$588,651
DOE/NSF Dust and Ions: Self Organization and Stability, (September 2020 - August 2023), $454,302
JPL (Co-PI) Dust Charging and Transport in Simulated Lunar Swirl Environments, (January 2020 - December 2020), $30,000
NSF (Co-PI): Onset of Turbulence in Dusty Plasma Liquids (August 2019- July 2022), $257,840.
NSF/DOE: Dynamics of strongly coupled complex plasma systems with directed ion flow (August 2017 - July 2020), $230,000.
NSF/NASA (Co-PI): PK-4: Self-ordering of interacting complex plasma particles in microgravity (June 2017 - May 2021), $540,000.
NSF/DOE: Collaborative Research: Fundamental Charging Processes of Dust in Complex Plasmas (September 2014- August 2017), $345,000.
NSF CAREER: Charging and Coagulation of Dust Grains In Astrophysical and Laboratory Environments (June 2009- May 2015), $436,658.
Recent Publications
Influence of temporal variations in plasma conditions on the electric potential near self-organized dust chains
K. Vermillion, D. Sanford, L.S. Matthews, P. Hartmann, M. Rosenberg, , E. G. Kostadinova, J. Carmona-Reyes, T. W. Hyde, , A. M. Lipaev, A. D. Usachev, A. V. Zobnin, O. Petrov, M. H. Thoma, M. Y. Pustylnik, H. M. Thomas, and A. Okchinin, Physics of Plasmas, 29, 023701, 2022. DOI: 10.1063/5.0075261, arXiv:2111.00374
Effect of ionization waves on dust chain formation in a DC discharge
L.S. Matthews, K. Vermillion, P. Hartmann, M. Rosenberg, S. Rostami, E. G. Kostadinova, T. W. Hyde, M. Y. Pustylnik, A. M. Lipaev, A. D. Usachev, A. V. Zobnin, M. H. Thoma, O. Petrov, H. M. Thomas, and O. V. Novitskiy, Journal of Plasma Physics, 87(6), 905870618, 2021. DOI: 10.1017/S0022377821001215, arXiv:2107.10367
Fractional Laplacian Spectral Approach to Turbulence in a Dusty Plasma Monolayer
E. Kostadinova, R. Banka, J. Padgett, C. Liaw, L. Matthews, and T. Hyde, Physics of Plasmas, 28,073705, 2021. DOI: 10.1063/5.0047649, arXiv:2102.09344
A machine learning-based Bayesian optimization solution to nonlinear responses in dusty plasmas
Z. Ding, L. S. Matthews and T. W. Hyde, Machine Learning Science and Technology, 2,035017,2021. doi.org/10.1088/2632-2153/abe7b7, arXiv:2010.12132
The initial structure of chondrule dust rims II: charged grains
C. Xiang, A. Carballido, L. S. Matthews, and T. W. Hyde, Icarus, 354, 114053, Jan 2021. doi.org/10.1016/j.icarus.2020.114053, arXiv:1911.00981
Ionization waves in the PK-4 direct current neon discharge
P. Hartmann, M. Rosenberg, Z. Juhasz, L. Matthews, D. Sanford, K. Vermillion, J. Reyes, T. Hyde, Plasma Sources Science and Technology, 29(11), 115014, November 2020. DOI: 10.1088/1361-6595/abb955
Dust as probes: determining confinement and interaction forces
K. S. Ashrafi, R. Yousefi, M. Chen, L.S. Matthews, and T.W. Hyde, Physical Review E, 102, 043210, October 2020. DOI: 10.1103/PhysRevE.102.043210, arXiv: 2002.08251
Detailed model of the growth of fluffy dust aggregates in a protoplanetary disk: Effects of nebular conditions
C. Xiang,, A. Carballido, L. S. Matthews, and T. W. Hyde, Astrophysical Journal, 897(2), 182, July 2020. DOI: 10.3847/1538-4357/ab96c2, arXiv:1911.04589
Anomalous Diffusion in One-Dimensional Disordered Systems: A Discrete Fractional Laplacian Method (Part I) J. Padgett, E. Kostadinova, C. Liaw, K. Busse, L. Matthews, and T. Hyde, Journal of Physics A, 53, 135205, April 3 2020. DOI: 10.1088/1751-8121/ab7499 arXiv:1907.10824
Dust charging in dynamic ion wakes
L.S. Matthews, D.L. Sanford, E. Kostadinova, K.S. Ashrafi, E. Guay, and T.W. Hyde, Physics of Plasmas, 27, 023703, February 2020. DOI: 10.1063/1.5124246. Scilight DOI: 10.1063/10.0000789
Nonlinear mode coupling and internal resonance observed in a dusty plasma
Z. Ding, K. Qiao, N. Ernst, J. Kong, L. S. Matthews, and T. W. Hyde, New Journal of Physics, 21, 103051, October 2019. DOI: 10.1088/1367-2630/ab4d95
Dust particle pair correlation functions and the non-linear effect of interaction potentials
J. Kong, K. Qiao, L. S. Matthews, and T. W. Hyde, IEEE Transactions on Plasma Science, 47(7), 3057-3062, July 2019. DOI: 10.1109/TPS.2019.2906583
Mapping the Plasma Potential in a Glass Box
L. Scott, N. Ellis, M. Chen, L. S. Matthews, and T. W. Hyde, IEEE Transactions on Plasma Science, 47(7), 3079-3086, July 2019. DOI: 10.1109/TPS.2019.2900163
Nonlinear response of vertical paired structure in complex plasma
Z. Ding, K. Qiao, J. Kong, L. Matthews, and T. Hyde, Plasma Physics and Controlled Fusion, 61, 055004, March 21, 2019. DOI: 10.1088/1361-6587/ab062c
Spectral approach to transport in the two-dimensional honeycomb lattice with substitutional disorder
E G Kostadinova, C D Liaw, A S Hering, A Cameron, F Guyton, L S Matthews, and T W Hyde, Physical Review B, 99, (2), 024115, 2019. ArXiv Preprint DOI: 10.1103/PhysRevB.99.024115
Self-diffusion in two-dimensional quasi-magnetized rotating dusty plasmas
P. Hartmann, P., J. C. Reyes, E. G. Kostadinova, L. S. Matthews, T. W. Hyde, R. U. Masheyeva, K. N. Dzhumagulova, T. S. Ramazanov, T. Ott, H. Kählert, M. Bonitz, I. Korolov, and Z. Donkó, Physical Review E, 99, 013203, 2019.
ArXiv Preprint DOI: 10.1103/PhysRevE.99.013203
The initial structure of chondrule dust rims I: electrically neutral grains
C. Xiang, L. Matthews, T. Hyde, R. Hanna, and A. Carballido, Icarus, 321, 99-111, March, 2019.
ArXiv Preprint
Particle Growth in an Experimental Dusty Plasma System
S.-Z. Jiang, X.-N. Hou, J. Kong, L. S. Matthews, T. W. Hyde, F. Huang, and M.-J. Wang, Chinese Physics Letters, 35(12), 125201, 2018.
Discrete stochastic charging of aggregate grains
L. S. Matthews, B. Shotorban, and T. W. Hyde, Physical Review E, 97, 053207, May, 2018. Featured in Kaleidoscope, May 2018.
ArXiv Preprint
Transport properties of disordered 2D complex plasma crystal
E. G. Kostadinova, F. Guyton, A. Cameron, K. Busse, C. Liaw, L. S. Matthews, and T. W. Hyde, Contrib. to Plasma Phys., 58(2-3), 209, 2018. DOI:10.1002/ctpp.201700111
ArXiv Preprint
Delocalization in infinite disordered 2D lattices of different geometry
E. Kostadinova, K. Busse, N. Ellis, J. Padgett, C. Liaw, L. Matthews, and T. Hyde, Physical Review B, 96, 235408, 15 December 2017. DOI: 10.1103/PhysRevB.96.235408
ArXiv Preprint
The magnetic field inside a protoplanetary disk gap opened by planets of different masses
Carballido, A., L. S. Matthews, and T. W. Hyde, MNRAS, July, 2017. DOI: 10.1093/mnras/stx1816
Simple experiment on the sputtering rate of solids in gas discharges
Hartmann, P., J. C. Reyes, I. Korolov, L. S. Matthews, and T. W. Hyde, Physics of Plasma, 2017. DOI: 10.1063/1.4985080
A complete publication list can be found on BearDocs