**Contact Information:**

Department of Mathematics

Baylor University

One Bear Place #97328

Waco, TX 76798-7328

**Office**: Sid Richardson 334B

Link to office hours listings

**Phone**: (254) 710-4846

**FAX**: (254) 710-3569

Personal Webpage

**Education:**

Ph.D., The University of Texas at Austin, 2000

**Academic Interests & Research:**

Finite elements for partial differential equations, preconditioners for multiphysics problems, mathematical software, multicore computing.

**Research Funding:**

NSF CCF award 0830655: Automated intrusive algorithms for numerical simulation of partial differential equations via software-based Frechet differentiation. $270k, 10/1/08 -- 9/30/11. (Co-PIs Kevin Long & Victoria Howle)

NSF CCF award 1117794: Metanumerical computing on emerging architectures: Automated embedded algorithms for partial differential equations on multicore platforms. $500k, 10/1/11 -- 09/30/13. (Co-PIs Kevin Long & Victoria Howle).

Contract from Sandia National Laboratory: Providing Intrepid with high-order basis functions. $130k, 2008 -- present.

Department of Energy Early Career PI program: Automatic parallel finite elements. $300k, 09/15/2004 -- 06/14/2009.

**Some Selected Publications:**

R. C. Kirby, and T. T. Kieu, *Fast simplicial quadrature-based finite element operators using Bernstein polynomials*, Numerische Mathematik 121(2): 261 -- 279 (2012).

V. E. Howle and R. C. Kirby, *Block preconditioners for finite element discretization of incompressible flow with thermal convection*, Numerical Linear Algebra with Applications 19(2): 427 -- 440 (2012).

K. R. Long, R. C. Kirby, and B. van Bloemen Waanders, *Unified embedded parallel finite element computations via software-based Frechet differentiation*, SIAM J. Scientific Computing 32(6):3323 -- 3351 (2010).

R. C. Kirby, *From functional analysis to iterative methods*, SIAM Review 52(2): 269 -- 293 (2010).

R. C. Kirby and A. Logg, *A compiler for variational forms*, ACM Trans. Math. Software. 32:417-444 (2006).

R. C. Kirby, *FIAT: A new paradigm for computing finite element basis functions*, ACM Trans. Math. Software. 30:502-516 (2004).