1. Write careful definitions for the following.

 (a) Topology

 (b) Basis

 (c) Closed Set

 (d) Net convergence

 (e) Cluster point for a net

 (f) Continuous function
(g) Compact set

(h) Connected set

(i) Quotient space

(j) Closure of a set

(k) Path connected

(l) A *chain complex* is:

(m) A *short exact sequence* is:
(n) A simplicial complex is:

(o) Let X be a topological space. For $p \geq 0$, the p-th singular chain group $S_p(X)$ and boundary $\partial : S_p(X) \to S_{p-1}(X)$ are given by:

(p) Let Λ be an index set, and for each $\lambda \in \Lambda$, X_λ a topological space. Let $X = \bigcup_{\lambda \in \Lambda} X_\lambda$. Then the topology on X is coherent with the topologies on X_λ if:

(q) A set X in \mathbb{R}^n is star convex with respect to a point w if:

(r) A topological space X is a CW complex if:

(s) Let X be a CW complex. For $p \geq 0$, the p-th cellular chain group $S_p(X)$ and boundary $\partial : S_p(X) \to S_{p-1}(X)$ are given by:

(t) The projective n-space P^n is defined to be:
2. Prove exactly ONE of the following theorems from class. You do not need to recopy the statement of the theorem.

 (a) Let \(X \) and \(Y \) be a topological spaces. A function \(f : X \to Y \) is continuous if, and only if, for every net \((x_\lambda)_{\lambda \in \Lambda}\) in \(X \) that converges to a point \(x \in X \) we have the net \((f(x_\lambda))_{\lambda \in \Lambda}\) converges to \(f(x) \in Y \).

 (b) Tychonoff’s Theorem

 (c) Let \(E \subset X \). If \(E \) is connected and \(E \subseteq A \subseteq \overline{E} \) then \(A \) is also connected.

3. Prove exactly ONE of the following theorems from class. You do not need to recopy the statement of the theorem.

 (a) Let \(X \) be compact. If \(E \) is a collection of closed sets with the FIP, then \(\cap E \) is non-empty.

 (b) Let \(X \) be a topological space. If each pair of points \(x,y \in X \) is in a set \(E_{x,y} \) that is connected, then \(X \) is connected.

4. Prove exactly ONE of the following theorems from class. You do not need to recopy the statement of the theorem.

 (a) (Zig-Zag Lemma) Let \(0 \to C \xrightarrow{d} D \xrightarrow{\psi} E \to 0 \) be a short exact sequence of chain complexes. Prove that the long sequence of homology groups

 \[
 \cdots \to H_p(C) \xrightarrow{d_\ast} H_p(D) \xrightarrow{\psi_\ast} H_p(E) \xrightarrow{\partial_\ast} H_{p-1}(C) \to \cdots
 \]

 is exact. [You may assume that \(\partial_\ast \) is a well-defined homomorphism]

 (b) The generalized Jordan Curve Theorem Let \(n > 0 \) Let \(C \) be a subset of \(\mathbb{S}^n \) homeomorphic to then \(n-1 \) sphere. Then \(\mathbb{S}^n - C \) has precisely two components, of which \(C \) is the common topological boundary.

 (c) Zero-dimensional Homology Ket \(K \) be a simplical complex. Then the group \(H_0(K) \) is free abelian. If \(\{v_\alpha\} \) is a collection consisting of a single vertex from each component of \(|K| \), then the homology classes of the chains \(v_\alpha \) form a basis for \(H_0(K) \).

5. Complete TWO of the following problems. You must, of course, provide proofs (or counter examples) for your assertions.

 (a) Prove the Brouwer fixed-point theorem, i.e. prove that for \(n \geq 0 \) every continuous map from \(B^n \) to itself has a fixed point.

 (b) Let \(X \) be a subspace of \(\mathbb{R}^n \) which is star convex relative to the point \(w \). Then \(X \) is acyclic in singular homology.

 (c) State the Eilenberg-Steenrod Axioms for homology.

 (d) Let \(K,L \) be simplicial complexes and \(f,g : K \to L \) simplicial maps that are contiguous. Then there is a chain homotopy between \(f_\ast \) and \(g_\ast \), and hence \(f_\ast = g_\ast \).

 (e) Prove that \(\mathbb{R}^n \) is homeomorphic to \(\mathbb{R}^m \) if and only if \(n = m \).

6. Calculate the following

 (a) The homology groups of the Klein bottle, \(K \), and the connected sum of two Klein bottles, \(K \# K \), in all dimensions.

 (b) The fundamental group of the sphere, \(S^2 \).