1. Complete the following definitions (carefully)

(a) A basis for a topology on the set X is a collection \mathcal{B} of subsets of X such that …

(b) The point x is a limit point of the set A in a topological space X provided that …

(c) Let X and Y be topological spaces. A function $f : X \to Y$ is continuous if …

(d) Let $\{X_\alpha\}_{\alpha \in J}$ be an indexed family of topological spaces. A basis for the product topology on $\prod_{\alpha \in J} X_\alpha$ is given by …

(e) Let X be topological space. The component of x in X is …

(f) Let X be a topological space. We say X is Hausdorff if …

(g) Let X and Y be topological spaces. Two functions $f, f' : X \to Y$ are homotopic if …

(h) Let X and Y be a topological spaces and $f : X \to Y$ a continuous map. A set $U \subseteq Y$ is evenly covered by f if …

(i) Let X be a topological space and A a subset of X. Then A is a deformation retract of X if …
2. Complete the following definitions (carefully)

(a) Let X be a topological space. The (singular) homology group $H_k(X)$ is …

(b) Let $f : X \to Y$ be a continuous map. Then $f_* : H_i(X) \to H_i(Y)$ is given by …

(c) Let (X, A) be a pair of topological space. The relative homology group $H_k(X, A)$ is …

(d) Let (X, A) be a pair of topological space. Then $\partial : H_k(X, A) \to H_{k-1}(X)$ is given by …

(e) A pair (X, A) of topological spaces is called a good pair if …

(f) Let X be a CW complex. The cellular homology group $H^\text{CW}_i(X)$ is …

(g) Let $f : S^n \to S^n$ be a continuous map. Then the degree of f is …

(h) Let X be a topological space and let G be an abelian group. The (singular) cohomology group $H^i(X; G)$ is …

(i) Let $f : X \to Y$ be a continuous map. Then $f^* : H^i(Y; G) \to H^i(Y; G)$ is given by …
3. Prove exactly ONE of the following theorems from class. You do not need to recopy the statement of the theorem.

(a) A nonempty subset $A \subseteq \mathbb{R}^n$ is compact if and only if A is closed and bounded (in the standard metric on \mathbb{R}^n).

(b) The product of finitely many compact space is compact. NB: If you use any lemmas in this argument, you must also prove them.

(c) If X is a compact Hausdorff space, then X is a Baire space.

(d) Let $\pi : E \to B$ be a covering map with $\pi(e_0) = b_0$ and $\gamma : I \to B$ a path beginning at b_0. Then γ lifts to a path $\tilde{\gamma} : I \to B$ beginning at e_0. (Nb: you do not need to prove the uniqueness of the lift.)
4. Complete **TWO** of the following problems.

(a) Let $A, B \subseteq X$, a topological space.
 i. Show that if A is connected and $A \subseteq B \subseteq A$, then B is also connected.
 ii. Prove or give a counterexample for each of the following equations: (1) $A \cup B = \overline{A \cup B}$
 and (2) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
 iii. Show that if A and B are connected, then $A \times B$ is connected.

(b) Suppose that $q : X \rightarrow Y$ is a quotient map. Prove that if $p^{-1}(y)$ is connected for each y and Y is connected, then so is X.

(c) Show that a compact Hausdorff space is normal.

(d) Show that a countable product of separable spaces is separable.
5. Complete **ALL** of the following problems.

 (a) Prove that the fundamental group of the circle is isomorphic to \mathbb{Z}.

 (b) Let X be the complement of the z-axis in \mathbb{R}^3. Find $\pi_1(X)$ (provide an informal justification).

 (c) Let Y be the space obtained by removing three distinct points from \mathbb{R}^2. Find $\pi_1(Y)$ (provide an informal justification).
6. Complete exactly TWO of the following problems.

(a) Let \(f, g : X \to Y \) be two homotopic continuous maps and let \(f_* \), \(g_* : H_k(X) \to H_k(Y) \) be the induced homomorphisms in homology. Sketch a proof that \(f_* = g_* \).

(b) State the snake lemma and explain how it is used to construct the long exact sequence in homology of a pair of topological spaces \((X, A)\).

(c) Let \(X \) be a CW complex with no two cells in adjacent dimensions. Prove that \(H_k^{CW}(X) \) is a free abelian group with a basis in one-to-one correspondence with the \(k \)-cells of \(X \).
7. Complete exactly **TWO** of the following problems.

(a) Use the long exact sequence of the good pair \((D^n, S^{n-1})\) to prove that

\[
H_k(S^n) \cong \begin{cases}
\mathbb{Z} & \text{if } k = n \text{ or } k = 0; \\
0 & \text{otherwise.}
\end{cases}
\]

Remark: You may use without proof that the quotient \(D^n / S^{n-1}\) is homeomorphic to \(S^n\).

(b) Calculate the local homology groups \(H_k(\mathbb{R}^n, \mathbb{R}^n - \{x\})\) and then use the result to prove that \(\mathbb{R}^n\) is homeomorphic to \(\mathbb{R}^m\) if and only if \(n = m\).

(c) Prove that the antipodal map \(f : S^n \to S^n, x \mapsto -x\), has degree \((-1)^{n+1}\).
8. Complete exactly **two** of the following problems.

(a) Let K^2 be the Klein bottle equipped with a Δ-complex structure as shown below:

![Diagram of a Klein bottle]

Use the Δ-complex structure to show that

$$H_k(K^2) \cong \begin{cases}
\mathbb{Z} & \text{if } k = 0, \\
\mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z}) & \text{if } k = 1, \\
0 & \text{if } k \geq 2.
\end{cases}$$

(b) Let K^2 be the Klein bottle as above. Use the universal coefficient theorem to compute the cohomology groups $H^k(K^2; G)$, where G is an abelian group.

Remark: You may use without proof the following facts from homological algebra:

- $\text{Hom}(_ , G)$ and $\text{Ext}^1(_ , G)$ are additive functors
- $\text{Hom}(\mathbb{Z}, G) \cong G$
- $\text{Hom}(\mathbb{Z}/n\mathbb{Z}, G) \cong T_n(G) := \{ g \in G \mid ng = 0 \}$
- $\text{Ext}^1(\mathbb{Z}, G) = 0$
- $\text{Ext}^1(\mathbb{Z}/n\mathbb{Z}, G) \cong G/nG$

(c) Use a Mayer–Vietoris sequence to calculate the homology groups of a disk in the plane with two circular holes.