1. Complete the following definitions (carefully)

(a) A subbasis for a topology on the set X is a collection B of subsets of X such that ...

(b) Let X and Y be topological spaces and $q : X \to Y$ be continuous. Then q is a quotient map if ...

(c) Let $\{X_\alpha\}_{\alpha \in J}$ be an indexed family of topological spaces. A basis for the product topology on $\prod_{\alpha \in J} X_\alpha$ is given by ...

(d) A topological space X is locally connected if ...

(e) A topological space X is compact if ...

(f) Let X be a topological space. We say X is first countable if ...

(g) Let X be a topological space. Two functions $f, f' : [0, 1] \to X$ are path homotopic if ...

(h) Let X and Y be a topological spaces. X is a covering space of Y if ...

(i) Let X and Y be topological spaces. A map $f : X \to Y$ is nulhomotopic if ...
2. Complete the following definitions (carefully)

(a) Let X be a topological space. A \textit{singular k-simplex} is ...

(b) Let X be a topological space. The group $C_k(X)$ of \textit{singular k-chains} is ...

(c) Let X be a topological space. The \textit{boundary map} $\partial_k : C_k(X) \to C_{k-1}(X)$ is given by ...

(d) Let (X, A) be a pair of topological spaces. The group $C_k(X, A)$ of \textit{relative k-chains} is ...

(e) Let (X, A) be a pair of topological spaces. The \textit{boundary map} $\partial_k : H_k(X, A) \to H_{k-1}(X)$ in the long exact sequence of the pair (X, A) is given by ...

(f) Let X be a CW complex. The group $C_k^{\text{CW}}(X)$ of \textit{cellular k-chains} is ...

(g) Let X be a CW complex. The \textit{boundary map} $d_k : C_k^{\text{CW}}(X) \to C_{k-1}^{\text{CW}}(X)$ is given by ...

(h) Let X be a topological space and let G be an abelian group. The group $C_k^*(X; G)$ of \textit{singular k-cochains} with coefficients in G is ...

(i) Let X be a topological space and let R be a commutative ring. The \textit{cup product}

\[\cup : C^i(X; R) \times C^j(X; R) \to C^{i+j}(X; R) \]

of singular cochains with coefficients in R is given by ...
3. Prove exactly ONE of the following theorems from class. You do not need to recopy the statement of the theorem.

(a) Let X and Y be compact spaces. If N is an open subset of $X \times Y$ and contains $\{x_0\} \times Y$, then there exists a neighborhood W of x_0 with $W \times Y \subseteq N$.

(b) Every metrizable space is normal.

(c) If X is a compact Hausdorff space, then X is a Baire space.

(d) Let $\pi : E \to B$ be a covering map with $\pi(e_0) = b_0$ and $\gamma : I \to B$ a path beginning at b_0. Then γ lifts to a path $\tilde{\gamma} : I \to B$ beginning at e_0. (Nb: you do not need to prove the uniqueness of the lift.)
4. Complete **TWO** of the following problems.

(a) Let X be a topological space.

 i. Let $\{A_n\}_{n \in \omega}$ be a collection of connected subspaces of X and suppose that for each $n \in \omega$, $A_n \cap A_{n+1} \neq \emptyset$. Show that $\bigcup A_n$ is connected.

 ii. Let $\{A_\alpha\}_{\alpha \in \Lambda}$ be a collection of connected subspaces of X. Let A be a connected subspace of X with $A \cap A_\alpha \neq \emptyset$ for each $\alpha \in \Lambda$. Prove that $A \cup \bigcup A_\alpha$ is connected.

(b) Let X be a topological space and $A \subseteq X$. Show that if $x \in X$ and there is a sequence in A which converges to x, then $x \in A$. Is the converse true? (prove it or give a counterexample)

(c) Prove that \mathbb{R}^1 is not homeomorphic to \mathbb{R}^2.

(d) Show that a countable product of metric spaces is metric. Explain (briefly) why this does not hold for uncountable products.
5. Complete **ALL** of the following problems.

(a) Prove that there is no retraction from the closed unit disc onto the unit circle.

(b) Let X be the n-fold dunce cap, i.e. the quotient space formed from the closed unit disc by identifying each point z of the unit circle with the points $r(x), r^2(x), \ldots, r^{n-1}(x)$ where $r : S^1 \to S^1$ is given by rotation by $2\pi/n$. Find $\pi_1(X)$ (provide an informal justification).

(c) Show that space $\theta = S^1 \cup \{(x, 0) : -1 \leq x \leq 1\}$ and the space $X = S^1 \vee S^1$ are homotopy equivalent but not homeomorphic. (provide an informal justification).
6. Complete exactly TWO of the following problems.

(a) State and prove the Euler-Poincaré principle for Δ-complexes.

(b) State the Poincaré index theorem and use it to prove that every continuous (tangent) vector field on S^2 has at least one singular point.

(c) State the excision theorem and use it to calculate the groups $H_k(\mathbb{R}^3, \mathbb{R}^3 \setminus \{0\})$.
7. Complete exactly **TWO** of the following problems.

 (a) Prove that the reduced homology groups of a star-shaped region in \(\mathbb{R}^n \) are trivial.

 (b) Use the method of your choice to calculate the homology groups \(H_k(S^2 \times S^2) \).

 (c) Use a Mayer-Vietoris sequence to calculate the homology groups \(H_k(\mathbb{R}^3 \setminus S^1) \), where we identify \(S^1 = \{(x, y, 0) \in \mathbb{R}^3 \mid x^2 + y^2 = 1 \} \).
8. Complete two of the following problems.

(a) Let X be a topological space such that

$$H_k(X) \cong \begin{cases}
\mathbb{Z} & \text{if } k = 0 \text{ or } k = 3; \\
\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z} & \text{if } k = 1; \\
0 & \text{otherwise}.
\end{cases}$$

Use the universal coefficient theorem for homology to calculate the groups $H_k(X; G)$, where G is an abelian group.

(b) Write (without proof) the cellular chain complex of $\mathbb{R}P^3$ with respect to its standard CW complex structure and then calculate the homology groups $H^\text{CW}_k(\mathbb{R}P^3) \cong H_k(\mathbb{R}P^3)$.

(c) Use the cellular chain complex of $\mathbb{R}P^3$ from part (b) to calculate the cohomology groups $H^\text{CW}_k(\mathbb{R}P^3; G) \cong H^k(\mathbb{R}P^3; G)$, where G is an abelian group.