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The Plan

[Hall 1998]

What statistical ensemble corresponds to minimal prior
knowledge about a quantum state?

©® What is a typical quantum state?
- The setting for quantum mechanics
- The Fubini-Study metric for projective Hilbert spaces
- Density matrices
- The Bures-Hall measure
- The joint probability density function for eigenvalues of the
density matrix

@ A statistic for the Bures-Hall ensemble: the gap probability
- Pfaffian point processes
- Cauchy-Laguerre Matrix model
- Bi-orthogonal system of polynomials
- Integrability and the dynamical system
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The Density Matrix

Complex Hermitian 1 X 1 matrix p = p*

Unit trace Trp = 1

Positive definite p > 0, i.e. ¥[) , (¢ p|y) > 0

Pure state p = |1p>(1,b' orp’=p

Mixed state p # |1[1)(1,b|

Measured value of an observable, i.e. a Hermitian operator A, is Tr(pA)
Eigenvalues 0 < p; <1, Y7, p; =1

Ex: Check that the Bloch Sphere for a single qubit n = 2

1+z x—i
Pl y,2) = %(x+iy 1—3)

satisfies all the requirements.
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The Bures-Hall measure

- Hilbert-Schmidt distance:

d25(pa, pB) = Te((pa — pB)*)

Joint probability density function for the eigenvalues

P(plr .. .,pn) = Cinlz;l:l Pj:1 H (Pk - ‘O])2

1<j<kzn

- Bures-distance [Bures 1969]

d5(pa, ps) = 2= 2Tr \[(\Pa P VP2)
Ex: Joint probability density function for the eigenvalues [Hall 1998]
2
_ (Pk - Pj)
Plpr,-pn) = =1y o | | P 12 x Y
C s H 1<j<ksn (Pk+Pj)

- Challenge Ex: Show
2~ n(n— 1)nn/2

Cp=2—T o) HF(1+1)
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An example

Generalised gap probability for the Bures-Hall fixed-trace ensemble
ZM(t;n,a, &)

1 1 00 00 00 00
= —CFT(n,all)E(jOv —EI )dpl(ﬁ —5[ )dpn
n n (px — .)2
<(Yo-0]e 1 B

= j=1  1<j<ksn

Heret >0, £ € C,Re(n) > 1.
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Fixed-trace Bures-Hall gap probability n = 2, £ = 1 case of ZF(t;2,a,1)
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The Gap Probability

Step1:
Generalised gap probability for the Bures-Hall fixed-trace ensemble

Z" N (t;n,a,1,)

=gl <[ oAl

. (px = pj)?
5 o a Wk P
x (;P] r)gpj 15}19 (px +p))

Herer>0,t>0,¢ € C,Re(a) > -1.

Step 2:
Generalised gap probability for the unconstrained Bures-Hall ensemble
ZY(s;n,a,8)
00 00 0 00 2 n
1 1 Xk — Xj _x;
= U—_v(f _'5] )dxl”'(f _gf )dx” [T a2 e
CY(n,a) nt \Jo s 0 s \<ikan ST g
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Cauchy-Laguerre Two Matrix Model

Step 3 :
Generalised gap probability for the Cauchy-Laguerre Two Matrix Model

7S, ba,b;E,0)

st Ao
(= [Jon (o

2 [ H15j<k5n(xk - x/)(yk - y])

x| | x%eNiyle
i=1 ] I Hlﬁj,kSn(xj + k)

H (o = %)Yk — yj)

1<j<ksn

Step4:
The Unconstrained Bures-Hall generating function is related to the Cauchy-Laguerre
Two Matrix Model by

(ZU(S; n,a, é))z = 2"ZEL(s,s;a,a +1,&,8)

extending [Forrester+Kieburg 2016]
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Cauchy Bi-orthogonal Polynomial System

Bi-moments M are defined by

M]',k = f dxdym
$1xS, xX+y

The Cauchy-Laguerre gap probability is a determinant of the truncated Gram matrix

Kif <o, Vjkz0.

-1
78" = det (Mffk)zk:o #£0, nx1

with
w(x, y) = wi(x) wa(y) = x”e”‘y ey, Re(a, b) > -1

Proposition (Bertola+Gekhtman+Szmigielski 2010)
Let two sequences of univariate moments be defined as

aj = s dx wq (x)x/ f dy Wz(y)y’
1

A key identity, which we call the Cauchy relation because it follows directly from the Cauchy
kernel, for the bi-moments is the rank-1 condition

Mjx+ Mk = ajfr.
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Recurrence Relation

Define an inner product over polynomial spaces U,,>oI1,[x] using

S1%Sy
with f, g € UpsolIT,[x]

Two sequences of bi-orthogonal polynomials {Pn(x), Qn(y)},_, satisfying the orthogonality
relation

f (08(y)

<P7m Qn> = 6m,n
Let two sequences of univariate moments be defined as

= f; dx wl(x)Pj, nj = L dy ZUZ(]/)Q]
1 2

Proposition (BGS 2010)

Let the coefficients 1t,, 11, be non-vanishing for all n > 0, and the norms hy, or Z§ similarly be
non-vanishing. The bi-orthogonal polynomials Py, (x), Qn(y) defined by the general
orthogonality condition satisfy uncoupled, third-order scalar recurrence relations of the form

1 1
X Py — —Py|=13pPpio + rn,lpn+l + Vn,OPn + 771,—1Pn—1/
Tli+1 Tt

1 1
y(—lQnﬂ - U_Qn) = Sn,ZQn+2 + 5n,1Qn+1 + Sn,OQn + Sn,—lQn—l-
+ n
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Christoffel-Darboux Sum

Define the reproducing kernel

K, y) = ) PoQiy)-

1=0
In [BGS 2010] the notion of a pair of intertwinned polynomials was introduced

n

Pu(x) == ) mePul®),

k=0

Qu(v) = = Y, Qi)
=0

Proposition (WW 2022)

Let all the standard conditions apply. The Christoffel-Darboux sum for the reproducing kernel
has the evaluation

(c+ KL, ) = Pu(x)Qu(y) +

S [Pu(@)Qust (1) + Pt 9Qu()].

S+1
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Associated Functions

Associated Functions of the first type of n-th order

o= [ af@nm, o= [ a2
1 2

z

Associated Functions of the second type

PEIZ) (z) = f dxdy—w(x' ) Pu() ) QS,Z) (z) = f dxdy—w(x' Y —Qn(y)
$1%Sy S51%Sy

x+y z-x’ X+y z—-y
3 X 3 matrix variables for n > 0

Pua@ PV ) PP ()
Po=| Pul) PV PY®
P PP @ PP (v

Matrix system of first order recurrences with transfer matrices K, and L,

Pui1 = KnPn, Qn+1 =L@,
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Bilinear Form

Proposition (WW 2022)
The kernels Kﬁ,”v(x, y) for u,v = 0,1,2 are the bilinear forms

Tt (x + K (x5, 1) = PY (0T G, QY ()

where G(x, y) is the 3 X 3 matrix

S%l Sn _ _ Sn—l
o Sy [Yun = Y] St
Sp—
Gulx,y) = sijl [Xin=x]  [Xun + Y] [Ynn + 2] fcf,,l [Yon +x]
S S S
- Iri+1 gnl [X"’n + y] ;21

n
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Differential Equations

Re-define matrix variables

P e P ()
Pui=| Pu(x) e P(v)
Pua() e PP (x)

Overdetermined system

axPn = AuPn, &s?n = B,Pn,

Partial-fraction form of the Coefficients

1 _o 1 s
An(x) = ;ﬂ51) + mﬂs) +

1 00|
B =58 87, Gl =

Explicitly
Ty
0 7'(;11 0 1 0)
An(x) =10 1 0]+ ;ﬂn
0 ;;1 0
1

S P(O)(s)®(G”(s 9@ (-9) +
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P bP(Z) (x)

o

- 2)
x4 bP(WH (x)

x+t

i’b ~t
+t¢'

9 tPn

1 _
—ﬂﬁ, 4
+t

—C

=CuPu

ﬂﬁf")

C(°°)

P ns(Gy1 0@ 1)



Integrable Dynamics

Deduce three Schlesinger equations
s Ay — 0By = [Bn, Anl, 0t Ay — 9xCn = [Cu, A, 08By — 9sCyy = [Cu, B4]

o-functions
ou(s, t) == sds log ZSL, Tu(s, t) := tdylog ZSL

The o-functions have evaluations in terms of reproducing kernels
on(s, 1) = =& e SKO 11(5 Tu(s,t) = —l,l)th”e’tK:l’fl(—t, t)
Kernels defined by
n n
1 1
Ky =Y P ), Ky =Y PP®m
1=0 =0

The o-forms for deformed Cauchy-Laguerre bi-orthogonal ensemble have the
evaluations

0 Tl 0
Tl
Ons1(s,8) = sTr (|0 1 0| A + Tr (ﬂi,z)ﬂif))— — _Tr (AT AL,
0 -1 + Sn 0 S+ t)
Tt Sn 1
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Conclusions: Integrable Probability

A number of statistics have been calculated for the Bures-Hall
ensemble which are global in nature such as:

® Quantum purity E[Tr(p?)].

¢ von Neumann entropy E[-Tr(plog p)] and its higher
moments.

However

® The gap probability is a refined local statistic of the density
matrix spectrum, especially of the extreme eigenvalues.

¢ It is now accessible with the tools of "integrable probability"
and Riemann-Hilbert methods.

¢ Itis a rare example of an integrable formulation of a Pfaffian
point processes, whereas virtually all the other known cases
are of determinantal point processes.

¢ Itis a rank 3 isomonodromic system and is beyond the
Painlevé class which has rank 2.
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