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BACKGROUND: THE ANDERSON MODEL

The Anderson model on ¢2 (Zd)

H, = A+ AV,

o () (n) = Xm-npy=1 (P(m) = (n), [nly = |m[+---+[nd|.

o (Vup) (n) = w(n)p(n)

e {w(n)},ezs independent, identically distributed random variables.
@ )\ > 0 denotes the disorder strength.
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BACKGROUND: THE ANDERSON MODEL

H, = —A+ AV,

e Philip Anderson (1958): Disorder may drastically affect the transport
properties of an environment.
@ Anderson localization: suppression of electron transport due to disorder.

e Dynamical localization: typical decay of matrix elements of et
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Picture source: Aizenman-Warzel book “Random Operators: disorder effects

on quantum spectra and dynamics.” ,
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BACKGROUND: THE ANDERSON MODEL

e For H, = —A 4+ \V,, and d > 2 localization is well understood at (i) large
disorder (A >> 1) for all energies and (i) at any A > 0 near band edges.

@ When d = 1 special tools are available (Furstenberg, Ishii-Pastur and
Kotani-Simon theorems) and dynamical localization holds for any A > 0.
Contributions by Goldsheid-Molchanov-Pastur, Kunz-Souillard,
Carmona-Klein-Martinelli, Aizenman-Warzel,
Bucaj-Damanik-Fillman-Gerbuz-VandenBoom-Wang-Zhang,
Jitormirskaya-Zhu, ...

@ For d > 2 the techniques are either based on the multiscale analysis,
initiated by Frohlich and Spencer (1983) and developed further by Klein
and co-authors, or the Aizenman-Molchanov fractional moment method
(1993).
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RANDOM OPERATORS WITHIN HARTREE-FOCK

THEORY

(Hop) (n) = = > (io(m) = () + Ao (n)p(n) + gVerr(n)o(n)

mr~n

where Vg is the effective potential defined implicitly by

Vest(n) = (6n, F(H.)dn), F(2) = ﬁ

© When g #0, H, = —A + \V,, + gVeg takes into account interactions
among particles.

e For |g| << 1, Vg exists and is unique by a fixed point argument. It
follows that H,, is an ergodic Schrodinger operator. It is also random and
implicitly defined. It is a nonlinear and non-local function of H,,.
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THE HUBBARD MODEL

AcCzd
Ax{-1,1}
ny == (n,1) ny:=(n,—1)

BEEEEEE

(0,0)
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THE DISORDERED HUBBARD HAMILTONIAN

(o) — (HT(w)> _ (—A P gl Aw(g) o (n))

Acting on /2 (Zd) @ 02 (Zd) .

(\\//f((s))((:))> - <<<§:,’lf(($))§:>>) '

© Motivation comes from the formalism developed by Bach-Lieb-Solovej
(93) on the Hubbard model within generalized Hartree-Fock theory.

@ For simplicity, from now on we look at H,, = —A + AV, + gVeg.
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THEOREM ONE, LOCALIZATION AT LARGE DISORDER

AND WEAK INTERACTIONS

Under additional assumptions on the probability distribution of the random
potential, we have

THEOREM (M. AND SCHENKER, 2019)

Whenever |g| << 1

E (sup|<<5,,,e_itH“60>|> < Ce7VInl
t

holds for some C,v > 0 in the following regimes:
Q@ if d > 2, whenever A >> 1.
@ if d=1, for any A > 0.
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THEOREM ONE, LOCALIZATION AT LARGE DISORDER

AND WEAK INTERACTIONS

Under additional assumptions on the probability distribution of the random
potential, we have

THEOREM (M. AND SCHENKER, 2019)

Whenever |g| << 1
E (sup|<<5,,,e_itH“60>|> < Ce7VInl
t

holds for some C,v > 0 in the following regimes:
Q@ if d > 2, whenever A >> 1.
@ if d=1, for any A > 0.

Dynamics can be replaced by eigenfunction correlators

Q(m, n) := Sup, [{Om, 9(H)0n)|-
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THEOREM ONE, LOCALIZATION AT LARGE DISORDER
AND WEAK INTERACTIONS

THEOREM (M. AND SCHENKER, 2019)

Whenever |g| << 1,

E (sup|<5n,e—"’-‘”w50>|> < CeVIn
t

holds in the following regimes (recall that d denotes the lattice dimension):
Q@ ifd > 2, whenever A >> 1.
@ if d=1, for any A > 0.

In particular, for almost every w, H,, has pure point spectrum with
exponentially decaying eigenfunctions.
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POISSON STATISTICS

o Let AL = [~L,L]9“NZ9 and H, = 1, H,1, be the restriction of
Hy = —A+ AV, + gVest to £2(AL).

o Given E € R we study the point process {|AL|(E,r — E) : n € N} of
rescaled eigenvalues.
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POISSON STATISTICS

o Let AL = [~L,L]9“NZ9 and H, = 1, H,1, be the restriction of
Hy = —A+ AV, + gVest to £2(AL).

o Given E € R we study the point process {|AL|(E,r — E) : n € N} of
rescaled eigenvalues.

o Let / C R be an and pu£(/;w) be the number of eigenvalues of H in the

interval E + |T1L|I .

REw) = Sin(Enu)-5) (1)

pE(+;w) is the random counting measure.
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POISSON STATISTICS

THEOREM (M. IN PREPARATION)

For energies E € R in the exponential localization regime of
H, = —-A+ AV, + gVes, ,uf converges in distribution, as L — oo, to a Poisson
process with density given by the density of states v(E).
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POISSON STATISTICS

THEOREM (M. IN PREPARATION)

For energies E € R in the exponential localization regime of
H, = —-A+ AV, + gVes, ,uf converges in distribution, as L — oo, to a Poisson
process with density given by the density of states v(E).

Thus
o lim_E (e “L(‘P) = (e‘“(‘P)) for all ¢ € CF(R)
P(u(l) =k) = (k,) e~ holds for each Borel set | where fi(l) = v(E)|/|
and v(E) = 75°’P"E(H)5°>).
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POISSON STATISTICS

THEOREM (M. IN PREPARATION)

For energies E € R in the exponential localization regime of
H, = —-A+ AV, + gVes, ,uf converges in distribution, as L — oo, to a Poisson
process with density given by the density of states v(E).

Thus
o lim o E (e‘“f(‘P)) =E (e ##)) for all p € C(R)

o P(u(l)=k) = ﬁ(kll)k e~ holds for each Borel set | where fi(l) = v(E)|/|

and v(E) = W.

In particular, this extends the result of Minami to the interacting context and
shows that localization portion of the Spectral Statistics Conjecture persists
under weak interactions!
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Thank youl!
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PRESSURE FUNCTIONAL

Let A C Z9 be finite and consider the pressure functional
—P(I) = &) = B7S(N).

acting on all matrices ' of the form

_(T+ O
r_<0 '1)

satisfying 0 < T < 1, with '+ and '} acting on ¢2 (A).
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PRESSURE FUNCTIONAL

—P(I) = &) = B7S(N).
The Energy functional is

EM) =Tr(~A—p+AV)T 48 (60, T10)(0n, T15n).-

The Entropy is given by

S(M) = —Tr(Togl + (1 —T)log(1 —T)).
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MOTIVATION

o
o
—P(I) satisfies

Minimizer I =

) with 0 <T <1, with '+ and '} acting on 22(N). of

1

<(5,,, rT6f7> = <6n7 1t eﬁ(fA—u+>\Vw+F¢)6">

1

(0n, rl6n> = (0n, 1+ eB(=DB—p+AVu+Tr) On)-
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