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Background: The Anderson model

The Anderson model on ℓ2
(
Zd

)
Hω = −∆+ λVω

(∆φ) (n) =
∑

|m−n|1=1 (φ(m)− φ(n)), |n|1 = |n1|+ · · ·+ |nd |.
(Vωφ) (n) = ω(n)φ(n)

{ω(n)}n∈Zd independent, identically distributed random variables.
λ > 0 denotes the disorder strength.
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Background: The Anderson model

Hω = −∆+ λVω

Philip Anderson (1958): Disorder may drastically affect the transport
properties of an environment.
Anderson localization: suppression of electron transport due to disorder.
Dynamical localization: typical decay of matrix elements of e−itHω
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Predicted Phase Diagram

Picture source: Aizenman-Warzel book “Random Operators: disorder effects
on quantum spectra and dynamics.”
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Background: The Anderson model

For Hω = −∆+ λVω and d ≥ 2 localization is well understood at (i) large
disorder (λ >> 1) for all energies and (ii) at any λ > 0 near band edges.
When d = 1 special tools are available (Furstenberg, Ishii-Pastur and
Kotani-Simon theorems) and dynamical localization holds for any λ > 0.
Contributions by Goldsheid-Molchanov-Pastur, Kunz-Souillard,
Carmona-Klein-Martinelli, Aizenman-Warzel,
Bucaj-Damanik-Fillman-Gerbuz-VandenBoom-Wang-Zhang,
Jitormirskaya-Zhu, ...
For d ≥ 2 the techniques are either based on the multiscale analysis,
initiated by Fröhlich and Spencer (1983) and developed further by Klein
and co-authors, or the Aizenman-Molchanov fractional moment method
(1993).
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Random operators within Hartree-Fock
theory

(Hωφ) (n) = −
∑
m∼n

(φ(m)− φ(n)) + λω(n)φ(n) + gVeff(n)φ(n)

where Veff is the effective potential defined implicitly by

Veff(n) = ⟨δn,F (Hω)δn⟩, F (z) =
1

1 + eβz
.

When g ̸= 0, Hω = −∆+ λVω + gVeff takes into account interactions
among particles.
For |g | << 1, Veff exists and is unique by a fixed point argument. It
follows that Hω is an ergodic Schrödinger operator. It is also random and
implicitly defined. It is a nonlinear and non-local function of Hω.
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The Hubbard Model

Λ ⊂ Zd

Λ× {−1, 1}

n↑ := (n, 1) n↓ := (n,−1)

(0,0)

n↓

n↑
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The Disordered Hubbard Hamiltonian

HHub(ω) =

(
H↑(ω)
H↓(ω)

)
:=

(
−∆+ λω(n) + gV↑(n) 0

0 −∆+ λω(n) + gV↓(n)

)
Acting on ℓ2

(
Zd

)
⊕ ℓ2

(
Zd

)
.

1 (
V↑(ω)(n)
V↓(ω)(n)

)
=

(
⟨δn,F (H↓)δn⟩
⟨δn,F (H↑)δn⟩

)
.

2 Motivation comes from the formalism developed by Bach-Lieb-Solovej
(93) on the Hubbard model within generalized Hartree-Fock theory.

3 For simplicity, from now on we look at Hω = −∆+ λVω + gVeff .
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Theorem One, Localization at Large Disorder
and Weak Interactions

Under additional assumptions on the probability distribution of the random
potential, we have

Theorem (M. and Schenker, 2019)

Whenever |g | << 1

E
(
sup
t

|⟨δn, e−itHωδ0⟩|
)

≤ Ce−ν|n|

holds for some C , ν > 0 in the following regimes:
(a) if d ≥ 2, whenever λ >> 1.
(b) if d=1, for any λ > 0.

Dynamics can be replaced by eigenfunction correlators

Q(m, n) := sup
|φ|≤1

|⟨δm, φ(H)δn⟩|.
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Theorem One, Localization at Large Disorder
and Weak Interactions

Theorem (M. and Schenker, 2019)

Whenever |g | << 1,

E
(
sup
t

|⟨δn, e−itHωδ0⟩|
)

≤ Ce−ν|n|

holds in the following regimes (recall that d denotes the lattice dimension):
(a) if d ≥ 2, whenever λ >> 1.
(b) if d=1, for any λ > 0.

In particular, for almost every ω, Hω has pure point spectrum with
exponentially decaying eigenfunctions.
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Poisson Statistics

Let ΛL = [−L, L]d ∩ Zd and HL = 1LHω1L be the restriction of
Hω = −∆+ λVω + gVeff to ℓ2 (ΛL) .

Given E ∈ R we study the point process {|ΛL|(En,L − E ) : n ∈ N} of
rescaled eigenvalues.

Let I ⊂ R be an and µE
L (I ;ω) be the number of eigenvalues of HL in the

interval E + 1
|ΛL| I .

µE
L (I ;ω) =

∑
n

δ|ΛL|(En,L(ω)−E)(I )

µE
L (·;ω) is the random counting measure.
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Poisson Statistics

Theorem (M. In preparation)

For energies E ∈ R in the exponential localization regime of
Hω = −∆+ λVω + gVeff , µE

L converges in distribution, as L → ∞, to a Poisson
process with density given by the density of states ν(E ).

Thus
limL→∞ E

(
e−µE

L (φ)
)
= E

(
e−µ(φ)

)
for all φ ∈ C+

c (R)

P (µ(I ) = k) = µ̄(I )k

k! e−µ̄(I ) holds for each Borel set I where µ̄(I ) = ν(E )|I |
and ν(E ) = E(⟨δ0,PdE (H)δ0⟩)

dE .
In particular, this extends the result of Minami to the interacting context and
shows that localization portion of the Spectral Statistics Conjecture persists
under weak interactions!
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Thank you!
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Pressure Functional

Let Λ ⊂ Zd be finite and consider the pressure functional

−P(Γ) = E(Γ)− β−1S(Γ).

acting on all matrices Γ of the form

Γ =

(
Γ↑ 0
0 Γ↓

)
satisfying 0 ≤ Γ ≤ 1, with Γ↑ and Γ↓ acting on ℓ2 (Λ).
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Pressure Functional

−P(Γ) = E(Γ)− β−1S(Γ).

The Energy functional is

E(Γ) = Tr (−∆− µ+ λVω) Γ + g
∑
n

⟨δn, Γ↑δn⟩⟨δn, Γ↓δn⟩.

The Entropy is given by

S(Γ) = −Tr (Γ log Γ + (1 − Γ) log(1 − Γ)) .
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Motivation

Minimizer Γ =

(
Γ↑ 0
0 Γ↓

)
with 0 ≤ Γ ≤ 1, with Γ↑ and Γ↓ acting on ℓ2 (Λ). of

−P(Γ) satisfies

⟨δn, Γ↑δn⟩ = ⟨δn,
1

1 + eβ(−∆−µ+λVω+Γ↓)
δn⟩

⟨δn, Γ↓δn⟩ = ⟨δn,
1

1 + eβ(−∆−µ+λVω+Γ↑)
δn⟩.
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