Multi-scale analysis for the random XXZ higher spin chain

Lee Fisher

University of California, Irvine

May 25, 2022

Lee Fisher (UCI)

MSA for the Spin-J Chain

May 25, 2022

• Previous results:

- Beaud and Warzel (2017), and Elgart, Klein, and Stolz (2017) proved localization in the droplet spectrum (bottom of the spectrum) for the XXZ spin-1/2 chain via the fractional moment method. Elgart, Klein, and Stolz also proved dynamical exponential clustering of the averaged correlations of local observables and some proper spin chain manifestations of localization.
- Recently Klein and Elgart developed a multiscale analysis from which they derive localization for the XXZ spin-1/2 chain.
- Fischbacher and Ogunkoya (2020) classified the minimal configurations and derived entanglement bounds for the XXZ spin-J chain.

• Previous results:

- Beaud and Warzel (2017), and Elgart, Klein, and Stolz (2017) proved localization in the droplet spectrum (bottom of the spectrum) for the XXZ spin-1/2 chain via the fractional moment method. Elgart, Klein, and Stolz also proved dynamical exponential clustering of the averaged correlations of local observables and some proper spin chain manifestations of localization.
- Recently Klein and Elgart developed a multiscale analysis from which they derive localization for the XXZ spin-1/2 chain.
- Fischbacher and Ogunkoya (2020) classified the minimal configurations and derived entanglement bounds for the XXZ spin-J chain.
- This presentation:
 - Localization in the droplet spectrum of the Spin-J quantum spin chain.

$$H_{\omega} = \sum_{i \in \mathbb{Z}} \left(J^2 - \frac{1}{\Delta} (S_i^1 S_{i+1}^1 + S_i^2 S_{i+1}^2) - S_i^3 S_{i+1}^3 \right) + \lambda \sum_{i \in \mathbb{Z}} \omega_i \mathcal{N}_i$$

• Formal operator on
$$\bigotimes_{i\in\mathbb{Z}} \mathbb{C}^{2J+1}$$
.

- A spin number $J \in \frac{1}{2}\mathbb{N} = \left\{\frac{1}{2}, 1, \frac{3}{2}, \dots\right\}$
- $\Delta > 2J$ specifies the Ising phase of the XXZ chain.
- $\lambda > 0$ is the disorder parameter.
- Let $\{e_i\}_{i=0}^{2J}$ be the canonical basis for \mathbb{C}^{2J+1}

$$H_{\omega} = \sum_{i \in \mathbb{Z}} \left(J^2 - \frac{1}{\Delta} (S_i^1 S_{i+1}^1 + S_i^2 S_{i+1}^2) - S_i^3 S_{i+1}^3 \right) + \lambda \sum_{i \in \mathbb{Z}} \omega_i \mathcal{N}_i$$

Pauli Spin-J Matrices

$$S^{-}e_{i} = \begin{cases} \sqrt{2J + i(2J - 1) - i^{2}}e_{i+1} & \text{if } i < 2J \\ 0 & \text{if } i = 2J \end{cases}$$

$$S^{+}e_{i} = \begin{cases} \sqrt{i(2J + 1) - i^{2}}e_{i-1} & \text{if } i > 0 \\ 0 & \text{if } i = 0 \end{cases}$$

$$S^{1} = \frac{1}{2}(S^{+} + S^{-}), \quad S^{2} = \frac{1}{2i}(S^{+} - S^{-})$$

$$S^{3} = \text{diag}(J, J - 1, \dots, -J + 1, -J)$$

< A > <

æ

$$H_{\omega} = \sum_{i \in \mathbb{Z}} \left(J^2 - \frac{1}{\Delta} (S_i^1 S_{i+1}^1 + S_i^2 S_{i+1}^2) - S_i^3 S_{i+1}^3 \right) + \lambda \sum_{i \in \mathbb{Z}} \omega_i \mathcal{N}_i$$

• $\mathcal N$ is the particle number operator.

$$\mathcal{N} = 2J - S^3 = diag(0, 1, 2, \dots, 2J).$$

- ω = {ω_i}_{i∈ℤ} are i.i.d random variables with probability distribution μ absolutely continuous, bounded density, and {0,1} ⊂ suppμ ⊂ [0,1].
- H_{ω} is self-adjoint on an appropriate Hilbert space \mathcal{H} constructed from $\bigotimes_{\mathbb{Z}} \mathbb{C}^{2J+1}$.

$$H_{\omega} = \sum_{i \in \mathbb{Z}} \left(J^2 - \frac{1}{\Delta} (S_i^1 S_{i+1}^1 + S_i^2 S_{i+1}^2) - S_i^3 S_{i+1}^3 \right) + \lambda \sum_{i \in \mathbb{Z}} \omega_i \mathcal{N}_i$$

- If $\Lambda \subset \mathbb{Z}$ (finite), then H_{Λ} is appropriately defined on $\bigotimes_{\Lambda} \mathbb{C}^{2J+1}$
- Total particle number operator

$$\mathcal{N}_{\Lambda} = \sum_{i \in \Lambda} \mathcal{N}_i.$$

• We have that $[\mathcal{N}_{\Lambda}, \mathcal{H}_{\Lambda}] = 0$, particle numbers are conserved by \mathcal{H}_{Λ} .

• Motivates $H_{\Lambda}^{(N)}$, the restriction of H_{Λ} to an N-particle subspace.

Definition: Projections

$$egin{aligned} & \mathcal{P}^+_\Lambda := \bigotimes_{x \in \Lambda} \pi_{e_0}(x), \ & \mathcal{P}^-_\Lambda := 1 - \mathcal{P}^+_\Lambda. \end{aligned}$$

- Here $\pi_{e_0}(x)$ is the orthogonal projection onto ker (\mathcal{N}_x) .
- P⁺_Λ is the orthogonal projection onto the state where no particles are present in Λ (vacuum).
- Conversely P_{Λ}^{-} is the projection onto the space of configurations with at least one particle in Λ .

Definition: (m,E)-regular

Given $E \in \mathbb{R}$ and m > 0, an interval $\Lambda_L(j)$ is said to be (m, E)-regular if

$$m > L^{-\kappa}, \quad \text{dist}(E, \sigma(H_{\Lambda_L(j)})) > e^{-L^{\beta}}$$
$$\|P_i^-(H_{\Lambda_L(j)} - E)^{-1}P_{\Lambda_R(i) \cap \Lambda_L(j)}^+\| \le e^{-m(R+1)} \text{ for all } i \in \Lambda_L(j) \text{ and } R > L^{\tau}.$$

The equation in red is not the Green's function! This is the appropriate substitute for this model.

Definition: (m,E)-regular

Given $E \in \mathbb{R}$ and m > 0, an interval $\Lambda_L(j)$ is said to be (m, E)-regular if

$$m>L^{-\kappa}, \hspace{1em} {
m dist}(E,\sigma(H_{\Lambda_L(j)}))>e^{-L^eta}$$

 $\|P_i^-(H_{\Lambda_L(j)}-E)^{-1}P_{\Lambda_R(i)\cap\Lambda_L(j)}^+\|\leq e^{-m(R+1)} \text{ for all } i\in\Lambda_L(j) \text{ and } R>L^\tau.$

The equation in red is not the Green's function! This is the appropriate substitute for this model.

$$\mathcal{R}(m,L,I,u,v) := \{E \in I \implies \Lambda_L(u) \text{ or } \Lambda_L(v) \text{ is } (m,E) - \text{regular.} \}$$

Definition: (m,E)-regular

Given $E \in \mathbb{R}$ and m > 0, an interval $\Lambda_L(j)$ is said to be (m, E)-regular if

$$m > L^{-\kappa}, \quad \operatorname{dist}(E, \sigma(H_{\Lambda_L(j)})) > e^{-L^{\beta}}$$
$$\|P_i^-(H_{\Lambda_L(j)} - E)^{-1} P_{\Lambda_R(i) \cap \Lambda_L(j)}^+\| \le e^{-m(R+1)} \text{ for all } i \in \Lambda_L(j) \text{ and } R > L^{\tau}.$$

The equation in red is not the Green's function! This is the appropriate substitute for this model.

Theorem: The Multiscale Analysis

Fix $0 < \zeta < 1$, let $\Delta > 2J$, $\lambda > 0$, and $\delta \in (0, 1)$ and suppose that Δ and λ are large enough. Then there is $\mathcal{L} = \mathcal{L}(\Delta, \lambda, \delta)$ and $m = m(\Delta, \lambda, \delta)$ such that for all $L \ge \mathcal{L}$ and $u, v \in \mathbb{Z}$ with |u - v| > 2L we have

$$\mathbb{P}\{\mathcal{R}(m,L,\frac{l_{1,\delta}}{\delta},u,v)\}\geq 1-e^{-L^{\xi}}$$

Theorem: The Multiscale Analysis

Fix $0 < \zeta < 1$, let $\Delta > 2J$, $\lambda > 0$, and $\delta \in (0, 1)$ and suppose that Δ and λ are large enough. Then there is $\mathcal{L} = \mathcal{L}(\Delta, \lambda, \delta)$ and $m = m(\Delta, \lambda, \delta)$ such that for all $L \ge \mathcal{L}$ and $u, v \in \mathbb{Z}$ with |u - v| > 2L we have

$$\mathbb{P}\{\mathcal{R}(m,L,I_{1,\delta},u,v)\}\geq 1-e^{-L^{\xi}}.$$

• This theorem implies eigenfunction localization.

Definition: (m,I)-localizing

For $I \subset I_{1,\delta}$ and m > 0 we will say that $\Lambda_L \subset \mathbb{Z}$ is (m, I)-localizing if an eigensystem $\{(\varphi_{\nu}, \nu)\}_{\nu \in \sigma(H_{\Lambda_L})}$ is (m, I)-localized, that is, for all $\nu \in \sigma(H_{\Lambda_I}) \cap I$ there is $j_{\nu} \in \Lambda_L$ such that φ_{ν} is (j_{ν}, m) -localized:

$$\|P_i^-\varphi_\nu\| \leq e^{-m|i-j_\nu|}$$
 for all $i \in \Lambda_L$ with $|i-j_\nu| \geq L^{\tau}$.

Event: $Q(m, L, I, u) = \{\Lambda_L(u) \text{ is } (m, I) - \text{localizing for } H\}.$

Theorem: Eigenfunction Localization

Fix $0 < \xi < 1$, let $\Delta > 2J$, $\lambda > 0$, and $\delta \in (0, 1)$ and suppose that Δ and λ are large enough. Then there is $\mathcal{L} = \mathcal{L}(\Delta, \lambda, \delta)$ and $m = m(\Delta, \lambda, \delta)$ such that for all $L \ge \mathcal{L}$ and $u \in \mathbb{Z}$ we have

$$\mathbb{P}\{\mathcal{Q}(m,L,I_{1,\delta},u)\}\geq 1-e^{-L^{\xi}}.$$

Moreover if $\omega \in \mathcal{Q}(m, L, I_{1,\delta}, u)$ and $\{\varphi_{\nu}, \nu\}_{\nu \in \sigma(\mathcal{H}_{\Lambda_{L}(u)})}$ is an eigensystem for $\mathcal{H}_{\Lambda_{L}(u)}$, then for all $i, j \in \Lambda_{L}(u)$ with $|i - j| \ge L^{\tilde{\tau}}$ $(\tau < \tilde{\tau} < 1)$,

$$\sum_{\nu\in\sigma(\mathcal{H}_{\Lambda_{L}(u)})\cap I_{1,\delta}} \|P_{i}^{-}\varphi_{\nu}\|\|P_{j}^{-}\varphi_{\nu}\| \leq e^{-\frac{m}{2}|i-j|}.$$

$$\begin{split} U_{\Lambda}^{(N)} &: (\bigotimes_{i \in \Lambda} \mathbb{C}_{i}^{2J+1})^{(N)} \to \ell^{2}(\mathsf{M}_{\Lambda}^{(N)}) \text{ unitary.} \\ U_{\Lambda}^{(N)} H_{\Lambda}^{(N)} \left(U_{\Lambda}^{(N)}\right)^{*} &= -\frac{1}{2\Delta} A_{\Lambda}^{(N)} + \mathcal{W}_{\Lambda}^{(N)} + \lambda V_{\Lambda,\omega}^{(N)} =: \widehat{H}_{\Lambda}^{(N)} \end{split}$$

The Space of Configurations

$$\mathbf{M}_{\Lambda}^{(N)} := \left\{ \mathbf{m} : \Lambda \to \{0, 1, \dots, 2J\} : \sum_{x \in \Lambda} \mathbf{m}(x) = N \right\} ,$$

Configuration adjacency, $\mathbf{m} \sim \mathbf{n}$:

$$\begin{aligned} \exists \{x_0, x_1\} \in \mathcal{E}_{\Lambda} \text{ such that } \mathbf{m}(x_0) &= \mathbf{n}(x_0) + 1, \\ \mathbf{m}(x_1) &= \mathbf{n}(x_1) - 1, \\ \text{ and } \mathbf{m}(x) &= \mathbf{n}(x) \text{ when } x \in \Lambda \setminus \{x_0, x_1\}. \end{aligned}$$

$$U_{\Lambda}^{(N)}H_{\Lambda}^{(N)}\left(U_{\Lambda}^{(N)}\right)^{*}=-\frac{1}{2\Delta}A_{\Lambda}^{(N)}+\mathcal{W}_{\Lambda}^{(N)}+\lambda V_{\Lambda,\omega}^{(N)}=:\widehat{H}_{\Lambda}^{(N)}$$

Weighted Adjacency Operator

$$(A_{\Lambda}^{(N)}f)(\mathbf{m}) = \sum_{\substack{\mathbf{n}:\mathbf{n}\sim\mathbf{m}\\ x:\mathbf{m}(x)\neq\mathbf{n}(x)}} w(\mathbf{m},\mathbf{n})f(\mathbf{n})$$
$$w(\mathbf{m},\mathbf{n}) = \prod_{\substack{x:\mathbf{m}(x)\neq\mathbf{n}(x)}} (J(\mathbf{m}(x)+\mathbf{n}(x)+1)-\mathbf{m}(x)\mathbf{n}(x))^{1/2}$$

$$U_{\Lambda}^{(N)}H_{\Lambda}^{(N)}\left(U_{\Lambda}^{(N)}\right)^{*}=-\frac{1}{2\Delta}A_{\Lambda}^{(N)}+\mathcal{W}_{\Lambda}^{(N)}+\lambda V_{\Lambda,\omega}^{(N)}=:\widehat{H}_{\Lambda}^{(N)}$$

The $\ensuremath{\mathcal{W}}$ function

$$(\mathcal{W}^{(N)}_{\Lambda}f)(\mathbf{m}) = \mathcal{W}^{(N)}_{\Lambda}(\mathbf{m})f(\mathbf{m}) = \left(2JN - \sum_{\{i,i+1\}\in\mathcal{E}(\Lambda)}\mathbf{m}(i)\mathbf{m}(i+1)\right)f(\mathbf{m})$$

The Random Potential

$$(V_{\Lambda,\omega}^{(N)}f)(\mathbf{m}) = V_{\Lambda,\omega}(\mathbf{m})f(\mathbf{m}) = \left(\sum_{x\in\Lambda}\mathbf{m}(x)\omega_x\right)f(\mathbf{m})$$

Lee Fisher (UCI)

∃ >

$$\begin{split} U_{\Lambda}^{(N)} H_{\Lambda}^{(N)} \left(U_{\Lambda}^{(N)} \right)^* &= -\frac{1}{2\Delta} A_{\Lambda}^{(N)} + \mathcal{W}_{\Lambda}^{(N)} + \lambda V_{\Lambda,\omega}^{(N)} =: \widehat{H}_{\Lambda}^{(N)} \\ Q_1 &:= 4J^2 + 2J. \\ \mathbf{M}_{\Lambda,1}^{(N)} &:= \left\{ \mathbf{m} \in \mathbf{M}_{\Lambda}^{(N)} : \mathcal{W}_{\Lambda}^{(N)}(\mathbf{m}) < Q_1 \right\} \\ P_{\Lambda,1}^{(N)} &\text{ is the orthogonal projection onto } \ell^2(\mathbf{M}_{\Lambda,1}^{(N)}) \\ H_0^{(N)} &\geq \left(1 - \frac{2J}{\Delta}\right) \mathcal{W}^{(N)} \\ I_1 &:= \left[4J^2 \left(1 - \frac{2J}{\Delta}\right), Q_1 \left(1 - \frac{2J}{\Delta}\right) \right) \\ I_{1,\delta} &:= \left[4J^2 \left(1 - \frac{2J}{\Delta}\right), (Q_1 - \delta) \left(1 - \frac{2J}{\Delta}\right) \right] \end{split}$$

- Configurations in $M^{(N)}_{\Lambda,1}$ have support with one connected component.
- I_1 is called the droplet spectrum.

Definition: Λ_{ℓ} is $(1, \mathcal{N})$ -reduced

$$\lambda V_{\omega} P_{\Lambda_{\ell},1}^{(N)} \geq Q_1 \left(1 - \frac{2J}{\Delta}\right) P_{\Lambda_{\ell},1}^{(N)} \text{ for all } N > \ell^{\zeta'}. \quad (0 < \zeta' < \zeta < 1)$$

$$\{\Lambda_\ell \text{ is } (1,\mathcal{N})\text{-reduced}\} \subset \{I_1 \cap \sigma(\mathcal{H}^{(\mathcal{N})}_\Lambda) = \emptyset \text{ for all } \mathcal{N} > \ell^{\zeta'}\}.$$

Theorem: $(1, \mathcal{N})$ -reduced probability estimate

$$\mathbb{P}\{\mathsf{\Lambda}_\ell ext{ is } (1,\mathcal{N}) ext{-reduced}\} \geq 1-e^{-c_\mu\ell^{\zeta'}}$$

• If Λ_{ℓ} is $(1, \mathcal{N})$ -reduced then for localization we only worry about $N \leq \ell^{\zeta'}$.

æ

く 何 ト く ヨ ト く ヨ ト

Lemma: A Deterministic Estimate.

Let $\Lambda = \Lambda_L(i)$, $E \in I_{1,\delta} \setminus \sigma(\mathcal{H}^{(N)}_{\Lambda})$, $\Theta \subset \mathbf{M}^{(N)}_{\Lambda}$, $0 \le q \le \ell \le L$, $\mathbf{S}_{\Lambda_q(i)} \cap \Theta \subset (\mathbf{M}^{(N)}_{\Lambda,1})^c$, and

$$egin{aligned} q &< ilde{\ell} \leq ext{dist}_{\Lambda}(\mathbf{S}_{\Lambda_q(i)} \cap \Theta, \mathbf{M}_{\Lambda,1}^{(N)}) + q \ m &= \log\left(1 + rac{\delta(\Delta - 2J)}{4JQ_1}
ight). \end{aligned}$$

Then for all $\Psi \subset \mathbf{M}^{(N)}_{\Lambda}$ we have

$$\begin{aligned} \left\| P_{\Lambda_{q}(i)}^{-} \chi_{\Theta} (H_{\Lambda}^{(N)} - E)^{-1} \chi_{\Psi} \right\| &\leq \frac{C_{1}(J, \Delta)}{\delta} e^{-m \cdot \operatorname{dist}_{\Lambda} (\mathbf{S}_{\Lambda_{q}(i)} \cap \Theta, \Psi)} \\ &+ \frac{C_{2}(J, \Delta)}{\delta} \sum_{r \in \Lambda} e^{-m \left(1 - \frac{q}{\tilde{\ell}}\right) \max\{|r - i|, \tilde{\ell}\}} \left\| P_{r}^{-} \left(H_{\Lambda}^{(N)} - E \right)^{-1} \chi_{\Psi} \right\| \end{aligned}$$

Lee Fisher (UCI)

May 25, 2022

イロト イヨト イヨト

Lemma: Regular Intervals Estimate

Let $E \in I_{1,\delta}$. Assume that the interval Λ_L is $(1, \mathcal{N})$ -reduced. Let *m* satisfy

$$\ell^{-\kappa} < m \leq \log\left(1 + rac{\delta(\Delta - 2J)}{4JQ_1}
ight).$$

Let $i, j \in \Lambda_L$ with $|j - i| < R - 2\ell$ so that $\Lambda_\ell(i) \subset \Lambda_R(j)$, and suppose that the interval $\Lambda_\ell(i)$ is (m, E)-regular. Then for sufficiently large L,

$$\|P_i^- R_{\Lambda_L}(E) P_{\Lambda_R(j)}^+\|$$

$$\leq \max\left\{ e^{-m'(R+1-|j-i|)}, \max_{r\in\Lambda_L} e^{-m'\max\{|r-i|,\ell^{\tau}\}} \left\| P_r^- R_{\Lambda_L}(E) P_{\Lambda_R(j)}^+ \right\| \right\}$$

where $m' \geq m(1 - C\ell^{-(\tau - \beta - \kappa)})$.

Definition: (m,E)-Buffer

Interval $\Upsilon \subset \Lambda_L$ is called an (m, E)-buffer if for all $s \in \partial^{\Lambda_L} \Upsilon$ we have that $\Lambda_\ell(s)$ is an (m, E)-regular interval. In this case we set $\Upsilon' = \Upsilon \setminus \partial^{\Lambda_L} \Upsilon$.

Lemma: Buffered Set Estimate

Let $E \in I_{1,\delta}$, Λ_L is $(1, \mathcal{N})$ -reduced, $\Upsilon \subset \Lambda_L$ be an (m, E)-buffer, where m satisfies the inequality, $j \in \Lambda_L$ and $\Upsilon \subset \Lambda_R(j)$. Assume $\operatorname{dist}(E, \sigma(H_{\Lambda_L \setminus \partial \Upsilon})) > e^{-L^{\beta}}$. Then there exist $s_{\Upsilon} \in \partial_{\Lambda_L} \Upsilon$ such that for all $q \in \Upsilon'$ we have

$$\begin{aligned} \|P_q^- R_L(E) P_{\Lambda_R(j)}^+\| \\ \lesssim e^{L^\beta} \max\left\{ e^{-m'(R+1-|s_{\Upsilon}-j|)}, \max_{r\in\Lambda_L} e^{-m'\max\{|r-s_{\Upsilon}|,\ell^{\tau}\}} \|P_r^- R_L(E) P_{\Lambda_R(j)}^+\| \right\}. \end{aligned}$$

イロト イボト イヨト イヨト

3

The Starting Condition

Theorem: Starting Condition

Given $\Delta>2J$, $\lambda>0$ and $\delta\in(0,1)$. Suppose that L satisfies,

$$\begin{split} \max\left\{ \frac{4JQ_1}{\bar{\mu}} \left(1 - \frac{2J}{\Delta}\right) L^{-\zeta'}, e^{-\frac{1}{6}L^{\beta}} \right\} &\leq \lambda \\ e^{-L^{\beta}} &< \frac{\delta}{2} \left(1 - \frac{2J}{\Delta}\right) \\ L^{-\kappa} &< \frac{1}{3} \log\left(1 + \frac{\delta(\Delta - 2J)}{4JQ_1}\right) \\ e^{L^{\zeta''}} &\leq \Delta\lambda \end{split}$$

Let $m = \frac{1}{4} \min \left\{ 1, \log \left(1 + \frac{\delta(\Delta - 2J)}{4JQ_1} \right) \right\}$. Then if *L* is sufficiently large, setting $\theta_L = \min \{ 2mL^{\tau}e^{-4mL-L^{\beta}}, e^{-L^{\beta}} \}$, for all $E \in I_{1,\delta}$ we have $\mathbb{P}\{\mathcal{R}(m, L, I(E, \theta_L), u, v)\} \ge 1 - e^{-L^{\zeta}}$ for all $u, v \in \mathbb{Z}$ with |u - v| > 2L.

Theorem: Induction on Scales

Given $\delta \in (0,1)$ and $0 < \zeta < 1$, let $\Delta > 2J$ and $\lambda > 0$, the scale L_0 , and m_0 satisfy the hypothesis of the starting condition. Consider an interval $I \subset I_{1,\delta}$, and suppose we have

 $\mathbb{P}\{\mathcal{R}(m_0,L_0,I,u,v)\} \geq 1 - e^{-L_0^{\zeta}} \text{ for all } u,v \in \mathbb{Z} \text{ with } |u-v| > 2L_0.$

Then, if L_0 is sufficiently large, setting $L_{k+1} = L_k^{\gamma}$, we have

$$\mathbb{P}\{\mathcal{R}(m_k, L_k, I, u, v)\} \geq 1 - e^{-L_k^{\zeta}} \text{ for all } u, v \in \mathbb{Z} \text{ with } |u - v| > 2L_k,$$

for all k = 0, 1, ... Also m_k is a decreasing sequence with $m_k \ge m_0/2$.

Theorem: Induction on Scales

Given $\delta \in (0,1)$ and $0 < \zeta < 1$, let $\Delta > 2J$ and $\lambda > 0$, the scale L_0 , and m_0 satisfy the hypothesis of the starting condition. Consider an interval $I \subset I_{1,\delta}$, and suppose we have

 $\mathbb{P}\{\mathcal{R}(m_0,L_0,I,u,v)\} \geq 1 - e^{-L_0^{\zeta}} \text{ for all } u,v \in \mathbb{Z} \text{ with } |u-v| > 2L_0.$

Then, if L_0 is sufficiently large, setting $L_{k+1} = L_k^{\gamma}$, we have

$$\mathbb{P}\{\mathcal{R}(m_k, L_k, I, u, v)\} \ge 1 - e^{-L_k^{\zeta}} \text{ for all } u, v \in \mathbb{Z} \text{ with } |u - v| > 2L_k,$$

for all k = 0, 1, ... Also m_k is a decreasing sequence with $m_k \ge m_0/2$.

- Proof by first estimating the size/amount of non-regular intervals,
- then iterating the results for buffer-sets and regular intervals to prove regularity for one of the larger intervals.

Lee Fisher (UCI)

イロト 不得 トイヨト イヨト

Thank you.

< ロ > < 回 > < 回 > < 回 > < 回 >

3

Extra Material

<ロト < 四ト < 三ト < 三ト

3

Finite XXZ-Spin Systems

Spin Systems

Let $\Lambda=(\mathcal{V},\mathcal{E})$ be a finite graph. We will consider operators on the tensor product

$$\mathcal{H}_{\Lambda} = \bigotimes_{v \in \Lambda} \mathbb{C}^{2J+1}.$$

XXZ two site Hamiltonian

Let $u, v \in \mathcal{V}$ with $u \sim v$ then for $\Delta > 2J > 0$,

$$h_{u,v} = J^2 - \frac{1}{\Delta}(S_u^1 S_v^1 + S_u^2 S_v^2) - S_u^3 S_v^3$$

Particle Number

$$\mathcal{N} = 2J - S^3 = \mathsf{diag}(0, 1, 2, \dots, 2J).$$

Lee Fisher (UCI)

イロト イポト イヨト イヨト

17 / 28

э

The XXZ Hamiltonian

Adjusted two site Hamiltonian

$$\tilde{h}_{u,v} = h_{u,v} - J(\mathcal{N}_u + \mathcal{N}_v) = -\mathcal{N}_u \mathcal{N}_v - \frac{1}{2\Delta}(S_u^+ S_v^- + S_u^- S_v^+)$$

The Full Hamiltonian

$$H_{\Lambda} = \tilde{H}_{\Lambda} + 2J\mathcal{N}_{\Lambda} + \lambda V_{\Lambda,\omega}$$
$$\tilde{H}_{\Lambda} = \sum_{u,v\in\mathcal{E}} \tilde{h}_{u,v}, \quad \mathcal{N}_{\Lambda} = \sum_{u\in\mathcal{V}} \mathcal{N}_{u}, \quad V_{\Lambda,\omega} = \sum_{u\in\mathcal{V}} \omega_{u}\mathcal{N}_{u}$$

Conservation and Decomposition

$$[\mathcal{N}_G, \mathcal{H}_G] = 0 \implies \mathcal{H}_{\Lambda} = \bigoplus_{N=0}^{2J \# (\Lambda)} \mathcal{H}_{\Lambda}^{(N)}$$

Lee Fisher (UCI)

May 25, 2022

∢ ≣ ≯

Image: A matched black

18 / 28

æ

Interesting Properties 1. Bounds and Minimizers

Lemma: Relative Bounds

$$-4J\mathcal{W}_{\Lambda} \leq A_{\Lambda} \leq 4J\mathcal{W}_{\Lambda}$$

 $\left(1 - \frac{2J}{\Delta}\right)\mathcal{W}_{\Lambda} \leq H_{\Lambda} \leq \left(1 + \frac{2J}{\Delta}\right)\mathcal{W}_{\Lambda}.$

Cite Christoph.

Lemma: Minimizers of \mathcal{W} .

Let Λ be a finite interval and let $N \in \mathbb{N}$.

$$\mathcal{W}_{0}^{(N)} = \begin{cases} 2JN - \lfloor \frac{N}{2} \rfloor \lceil \frac{N}{2} \rceil & N < 4J \\ 4J^{2} & N \ge 4J \end{cases}$$

Proof cite Christoph and myself. Structure minimal configurations are known but not important for this talk.

May 25, 2022

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Interesting Properties 2. Energy Intervals

$$\begin{split} \mathbf{M}_{\Lambda,k}^{(N)} &:= \left\{ \mathbf{m} \in \mathbf{M}_{\Lambda}^{(N)} : \mathcal{W}_{\Lambda}^{(N)}(\mathbf{m}) < 4J^{2} + 2Jk \right\} \\ Q_{k} &= 4J^{2} + 2Jk. \\ I_{k} &:= \left[4J^{2} \left(1 - \frac{2J}{\Delta} \right), Q_{k} \left(1 - \frac{2J}{\Delta} \right) \right) \\ I_{k,\delta} &:= \left[4J^{2} \left(1 - \frac{2J}{\Delta} \right), (Q_{k} - \delta) \left(1 - \frac{2J}{\Delta} \right) \right] \\ P_{\Lambda,k}^{(N)} \text{ is the orthogonal projection onto } \ell^{2}(\mathbf{M}_{\Lambda,k}^{(N)}) \end{split}$$

Conjecture: Clusters and \mathcal{W}

For all $N \ge 4kJ$, $\mathbf{m} \in \mathbf{M}_{\Lambda,k}^{(N)}$ if and only if \mathbf{m} is a configuration with at most k connected components. The case for k = 1 is known and proven in [??].

Interesting Properties 3. Lifting the Spectrum

Definition: The Lifted Operator

$$\mathcal{H}_{\Lambda,k}^{(N)} := \mathcal{H}_{\Lambda}^{(N)} + \left(\mathcal{Q}_k - 1
ight) \left(1 - rac{2J}{\Delta}
ight) \mathcal{P}_{\Lambda,k}^{(N)}.$$

Lemma: Lifting the Spectrum (N > 0)

$$extsf{H}_{\Lambda,k}^{(N)} \geq Q_k \left(1 - rac{2J}{\Delta}
ight).$$

Proof. From Lemma: Relative Bounds

$$\begin{split} \frac{H_{\Lambda,k}^{(N)}}{\left(1-\frac{2J}{\Delta}\right)} &\geq \mathcal{W} + (Q_k-1)\mathcal{P}_{\Lambda,k}^{(N)} \\ &= \left(\mathcal{W} + (Q_k-1)\mathcal{P}_{\Lambda,k}^{(N)}\right)\mathcal{P}_{\Lambda,k}^{(N)} + \left(\mathcal{W} + (Q_k-1)\mathcal{P}_{\Lambda,k}^{(N)}\right)\overline{\mathcal{P}}_{\Lambda,k}^{(N)} \\ &\geq Q_k\mathcal{P}_{\Lambda,k}^{(N)} + \mathcal{W}\overline{\mathcal{P}}_{\Lambda,k}^{(N)} \geq Q_k. \end{split}$$

Lee Fisher (UCI)

May 25, 2022

The Equivalence

$$U_{\Lambda}^{(N)}H_{\Lambda}^{(N)}\left(U_{\Lambda}^{(N)}\right)^{*} = -\frac{1}{2\Delta}A_{\Lambda}^{(N)} + \mathcal{W}_{\Lambda}^{(N)} + \lambda V_{\Lambda,\omega}^{(N)} =: \widehat{H}_{\Lambda}^{(N)}$$

Weighted Adjacency Operator

$$(\mathcal{A}^{(N)}_{\Lambda}f)(\mathbf{m}) = \sum_{\substack{\mathbf{n}:\mathbf{n}\sim\mathbf{m}\\ x:\mathbf{m}(x)\neq\mathbf{n}(x)}} w(\mathbf{m},\mathbf{n}) = \prod_{\substack{x:\mathbf{m}(x)\neq\mathbf{n}(x)}} (J(\mathbf{m}(x)+\mathbf{n}(x)+1)-\mathbf{m}(x)\mathbf{n}(x))^{1/2}$$

< A > <

æ

Equivalence to a Schrödinger Operator 2. The Potentials

$$\widehat{H}^{(N)}_{\Lambda} = -rac{1}{2\Delta} A^{(N)}_{\Lambda} + \mathcal{W}^{(N)}_{\Lambda} + \lambda \, V^{(N)}_{\Lambda,\omega}$$

The $\mathcal W$ function

$$(\mathcal{W}^{(N)}_{\Lambda}f)(\mathbf{m}) = \mathcal{W}^{(N)}_{\Lambda}(\mathbf{m})f(\mathbf{m}) = \left(2JN - \sum_{\{i,i+1\}\in\mathcal{E}(\Lambda)}\mathbf{m}(i)\mathbf{m}(i+1)\right)f(\mathbf{m})$$

The Random Potential

$$(V_{\Lambda,\omega}^{(N)}f)(\mathbf{m}) = V_{\Lambda,\omega}(\mathbf{m})f(\mathbf{m}) = \left(\sum_{x\in\Lambda}\mathbf{m}(x)\omega_x\right)f(\mathbf{m})$$

 $\omega_x \text{ i.i.d H\"older cont, } \sup_{a \in \mathbb{R}} \mu\{[a, a + t]\} \leq Kt^{\alpha} \text{ for all } t \in [0, 1].$

Definition: Λ_{ℓ} is $(1, \mathcal{N})$ -reduced

if for all $N > \ell^{\zeta'}$,

$$\lambda V_{\omega} P_{\Lambda,1}^{(N)} \geq Q_1 \left(1 - rac{2J}{\Delta}\right) P_{\Lambda,1}^{(N)}.$$

$$\begin{split} H_{\Lambda}^{(N)} &\geq \left(1 - \frac{2J}{\Delta}\right) \mathcal{W} + \lambda V_{\omega} \\ &= \left[\left(1 - \frac{2J}{\Delta}\right) \mathcal{W} + \lambda V_{\omega} \right] P_{\Lambda,1}^{(N)} + \left[\left(1 - \frac{2J}{\Delta}\right) \mathcal{W} + \lambda V_{\omega} \right] \bar{P}_{\Lambda,1}^{(N)} \\ &\geq \left(1 - \frac{2J}{\Delta}\right) \left(4J^2 + Q_1\right) P_{\Lambda,1}^{(N)} + \left(1 - \frac{2J}{\Delta}\right) Q_1 \bar{P}_{\Lambda,1}^{(N)} \geq Q_1 \left(1 - \frac{2J}{\Delta}\right) . \\ &\{\Lambda_{\ell} \text{ is } (1, \mathcal{N}) \text{-reduced}\} \subset \{I_1 \cap \sigma(H_{\Lambda}^{(N)}) = \emptyset \text{ for all } N > \ell^{\zeta'}.\} \end{split}$$

Theorem: $(1, \mathcal{N})$ -reduced probability estimate

$$\mathbb{P}\{ egin{smallmatrix} \Lambda_\ell \ ext{is} \ (1,\mathcal{N}) ext{-reduced}\} \geq 1-e^{-c_\mu\ell^{\zeta'}} \end{cases}$$

Lee Fisher (UCI)

May 25, 2022

э

24 / 28

A D N A B N A B N A B N

Target Theorem Proof Strategy

- (m, E)-regular requires dist(E, σ(H_{ΛL}(j))) > e^{-L^β}, need to control the probability.
 - Reducedness and Wegner Estimates.
- Need to be able to move between scales. If a regular box sits inside of larger box; what can be said about the "Greens function" on the larger box?
 - Combes-Thomas estimates and initial localization lemmas.
- What about intervals which are not regular?
 - Need to estimate the probability of this.
 - Need to estimate the size of the resolvent here too.
- Ooes the "large enough" scale L₀ actually exist?
 - The starting condition.
- If an interval of size L_0^{γ} contains a large amount of regular intervals of size L_0 , then the larger interval is also regular.
- Induct on L_0 , ie $L_0, L_0^{\gamma}, L_0^{\gamma^2}, \ldots$ then move to arbitrary scales.

Lemma: Wegner Estimate

Let I be an open interval such that $I \subset I_1$. Then

$$\mathbb{P}\{\sigma_{I}(H_{\Lambda}^{(N)})\neq\emptyset\}\leq K|I|^{\alpha}\lambda^{-\alpha}\ell^{2Q_{1}+1}$$

Notice in particular,

$$\mathbb{P}\left\{\sigma_{I}(H_{\Lambda}) \neq \emptyset\right\} \leq \mathbb{P}\left\{\sigma_{I}(H_{\Lambda}^{(N)}) \neq \emptyset \text{ for some } N \leq \ell^{\zeta'}\right\} \\ + \mathbb{P}\left\{\Lambda \text{ is not } (1, \mathcal{N}) - \text{reduced}\right\} \\ \leq K|I|^{\alpha}\lambda^{-\alpha}\ell^{2Q_{1}+1} + e^{-c_{\mu}\ell^{\zeta'}}.$$

Suppose $E \in I_{1,\delta}$ and $I = (E - e^{-\ell^{\beta}}, E + e^{-\ell^{\beta}})$. Finishes Step 1.

イロト イヨト イヨト ・

э

Step 5. The Multiscale Analysis 2. Proof Sketch part 1.

- Let $S_{\ell} = 2 \lfloor \ell^{(\gamma-1)\zeta_*} \rfloor$.
- Careful reasoning and comparing with the $\mathcal{R}(\dots)$ event in the hypothesis can give an estimate

 $\mathbb{P}\{\Lambda_L \text{ has at least } S_\ell \text{ nonregular disjoint subintervals}\} \leq e^{-L^{\zeta}}$

 Estimate the size of the buffer, Υ, required for ω in the complimentary event.

$$|\Upsilon| \leq 6\ell(S_\ell+1) \leq 12\ell^{(\gamma-1)\zeta_*-1} < L^{ au}.$$

- Use Wegner and large deviation estimates to control the probability that dist $(E, \sigma(H'_{\Lambda_L, K})) > e^{-L^{\beta}}$ in for all $K \in \mathcal{K}$, a large collection of subintervals.
- Pick ω so that Λ_L is $(1, \mathcal{N})$ reduced, this occurs with high probability.

Step 5. The Multiscale Analysis 3. Proof Sketch part 2.

- Once ω is chosen in the high probability set we can iterate the localization and buffered subsets lemmas.
- Let

$$G(r) = \|P_r^-(H_L - E)^{-1}P_{\Lambda_R(i)}^+\|$$
 for $r \in \Lambda_L$.

• The Localization lemma,

$$G(j) \leq \max\left\{e^{-m^{(1)}(R+1-|j-i|)}, \max_{r\in\Lambda_L}e^{-m^{(1)}\max\{|r-j|,\ell^{\tau}\}}G(r)\right\}.$$

• We can iterate the previous equation to get,

$$G(i) \leq e^{-m^{(2)}(|r_*-i|-2\ell^{\gamma_*})}e^{L^{eta}} \leq e^{-m^{(2)}(R-4\ell^{\gamma_*})}e^{L^{eta}} \leq e^{-m^{(3)}(R+1)}$$

• The desired bound for $(m^{(3)}, E)$ -regularity.