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Context for the XXZ Spin-J Project

@ Previous results:

o Beaud and Warzel (2017), and Elgart, Klein, and Stolz (2017) proved
localization in the droplet spectrum (bottom of the spectrum) for the
XXZ spin-1/2 chain via the fractional moment method. Elgart, Klein,
and Stolz also proved dynamical exponential clustering of the averaged
correlations of local observables and some proper spin chain
manifestations of localization.

o Recently Klein and Elgart developed a multiscale analysis from which
they derive localization for the XXZ spin-1/2 chain.

o Fischbacher and Ogunkoya (2020) classified the minimal configurations
and derived entanglement bounds for the XXZ spin-J chain.
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Context for the XXZ Spin-J Project

@ Previous results:

o Beaud and Warzel (2017), and Elgart, Klein, and Stolz (2017) proved
localization in the droplet spectrum (bottom of the spectrum) for the
XXZ spin-1/2 chain via the fractional moment method. Elgart, Klein,
and Stolz also proved dynamical exponential clustering of the averaged
correlations of local observables and some proper spin chain
manifestations of localization.

o Recently Klein and Elgart developed a multiscale analysis from which
they derive localization for the XXZ spin-1/2 chain.

o Fischbacher and Ogunkoya (2020) classified the minimal configurations
and derived entanglement bounds for the XXZ spin-J chain.

@ This presentation:
e Localization in the droplet spectrum of the Spin-J quantum spin chain.
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The XXZ Model

1
Ho= <J2 - Z(5,.15,.1+1 +S2S%1) - 5,-35,-3“) +AD Wi

i€Z i€Z

Formal operator on @), Cc2/H+1L
. 1 113
A spin number J € SN = {5,1,57...}
A > 2J specifies the Ising phase of the XXZ - chain.
A > 0 is the disorder parameter.
Let {e;}2/, be the canonical basis for C?/*1
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The XXZ Model

1
Ho=_ <J2 - Z(SilsilJrl +S57SH1) — 5i35i3+1) +AD_wili

i€Z i€Z

Pauli Spin-J Matrices

G {\/QJ Fi(2J—1) = Pejq ifi<2J

P =

0 if i =2J
Ste — \/I'(2J+1)—I'2€,'_1 ifi >0
"o ifi=0

St=1(5t+57), S?=1L(st-5)
S3 =diag(J,J—1,...,—J+1,-))
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The XXZ Model

1
Ho=_ (J2 - Z(5i15i1+1 +S57SH1) — 5i35i3+1) +AD_wili

iez i€z
e N is the particle number operator.

N =2J— 53 =diag(0,1,2,...,2J).

@ w = {wj}jez are i.i.d random variables with probability distribution 1
absolutely continuous, bounded density, and {0,1} C suppu C [0, 1].

@ H,, is self-adjoint on an appropriate Hilbert space H constructed from
R, C2J+1
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The XXZ Model

Ho=>" (J2 S (1St + S7SP) - 535,+1) FAY Wi

i€z i€Z
e If A C Z (finite), then Hy is appropriately defined on @, C?/*1

@ Total particle number operator

Na=> N

ien
@ We have that [Nj, Hy] = 0, particle numbers are conserved by Hy.

@ Motivates H,(\N), the restriction of Hp to an N-particle subspace.
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Projection Operators

Definition: Projections

Py = ®7reo(x),

xEN
Py =1- P/J\r.

@ Here 7, (x) is the orthogonal projection onto ker(N).
° P/J\r is the orthogonal projection onto the state where no particles are

present in A (vacuum).
@ Conversely P, is the projection onto the space of configurations with

at least one particle in A.
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Target Theorem and Regularity

Definition: (m,E)-regular
Given E € R and m > 0, an interval A.(j) is said to be (m, E)-regular if

m> L7, dist(E,0(Hp, ) > e

1P (Ha Gy = E) Py nm, I < 7R for all i € Ar(j) and R > L7,

The equation in red is not the Green's function! This is the appropriate
substitute for this model.
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Target Theorem and Regularity

Definition: (m,E)-regular

Given E € R and m > 0, an interval A/(j) is said to be (m, E)-regular if

m> L™, dist(E,0(Hp,)) > e

1P (Hauy = E) Py iyom, | < € ™FHD for all i € A(j) and R > L7

The equation in red is not the Green's function! This is the appropriate
substitute for this model.

R(m, L lu,v):={E €l = Ar(u) or Ar(v)is (m, E) — regular.}
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Target Theorem and Regularity

Definition: (m,E)-regular

Given E € R and m > 0, an interval A.(j) is said to be (m, E)-regular if

m> L, dist(E,0(Hp,q)) > e -

1P (Ha, Gy = E) 7Py iym, |l < € RFD for all i € Ar(j) and R > L7,

The equation in red is not the Green's function! This is the appropriate
substitute for this model.

Theorem: The Multiscale Analysis

Fix0<(¢<1 let A>2J, A>0, and d € (0,1) and suppose that A and
A are large enough. Then there is £ = L(A, A\, ) and m = m(A, )\, 9)
such that for all L > £ and u, v € Z with |u — v| > 2L we have

P{R(m, L, hs,u,v)} >1—e

= = = = -
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Target Theorem and Regularity

Theorem: The Multiscale Analysis

Fix0< (¢ <1 let A>2J,A>0, and d € (0,1) and suppose that A and
A are large enough. Then there is £ = L(A, X, ) and m = m(A, X, 6)
such that for all L > £ and u,v € Z with |u — v| > 2L we have

P{R(m, L, hs,u,v)} >1—e

@ This theorem implies eigenfunction localization.
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Eigenfunction Localization

Definition: (m,l)-localizing

For I C h s and m > 0 we will say that A, C Z is (m, I)-localizing if an
eigensystem {(cp,,,l/)},,eU(HAL) is (m, I)-localized, that is, for all

v € o(Hp,) N1 there is j, € Ar such that ¢, is (j,, m)-localized:

1P || < e~™i=! for all i € A with |i —j,| > L™

Event: Q(m, L, I, u) = {A.(u) is (m, ) — localizing for H}.
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Eigenfunction Localization

Theorem: Eigenfunction Localization

Fix0<&<1 let A>2J,A>0, and § € (0,1) and suppose that A and
A are large enough. Then there is £ = L(A, A\, ) and m = m(A, )\, 9)
such that for all L > £ and u € Z we have

P{Q(m, L, 5,u)} >1—e L.

Moreover if w € Q(m, L, I 5, u) and {p,, V}VGU(H/\L(U)) is an eigensystem
for Hp, (), then for all i,j € Ap(u) with |i —j| > L7 (7 < 7 < 1),

m i
> P elllPrell < e 2l
VGO’(H/\L(U))ﬁ/Lg
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Unitary equivalence to a Schrodinger Operator

U,(\N) ; (® (C,?JH)(N) — €2(MS\N)) unitary.

ieN

* 1 ~
UHY (U) = =5 A + W v = ALY

The Space of Configurations

MV —{m A—>{0,1,...,2J}:Zm(x):N} :

xEN

Configuration adjacency, m ~ n:

I{x0, x1} € Ep such that m(xp) = n(xp) + 1,
m(x1) = n(x) -1,
and m(x) = n(x) when x € A\ {xo, x1}.

= = = — Ty
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Unitary equivalence to a Schrodinger Operator

N) , (N N\ * 1 (v N N ~(N
UH (U) = =5 A + W v = ALY

,w

Weighted Adjacency Operator

(AMF)m) = 3" w(m,n)f(n)

nn~m

wimn)=  J[ (M) +n(x)+1) - m(x)n(x)"?
x:m(x)#n(x)
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Unitary equivalence to a Schrodinger Operator

{i,i+1}e£E(N)

WM A (m) = WM (m)f(m) = (2JN 3 m(i)m(i—i—l)) f(m)

The Random Potential
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Unitary equivalence to a Schrodinger Operator

N) (N N\ * 1 N N SN
UHY (M) = AR+ e av) = ALY

Q=42 +2J.
MS\NI) = {m € M(N) W(N (m) < Q1}
P/(\ 1) is the orthogonal projection onto 62(M5\Nl))
N
H" > (1= F)w
h=[4201-%) a(-5%))
hs = [422(1- %), (Q—0)(1-F)]
o Configurations in MS\"VI) have support with one connected component.
@ /1 is called the droplet spectrum.
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Large Deviation Estimates

Definition: A, is (1, N')-reduced

AoPI) > Q(1-F) P forall N>, (0<¢' <(<1)

{A¢is (1,N)-reduced} C {h No(H™) =0 for all N > ¢}

Theorem: (1, N')-reduced probability estimate

P{A; is (1, N)-reduced} > 1 — e*Cue‘J.

e If Ayis (1, NV)-reduced then for localization we only worry about
N <<
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Deterministic Lemma

Lemma: A Deterministic Estimate

Let A=A (i), E€hg\ ( MyecmV o<g<i<li,
S/\q(;)ﬂ@C( (N))C

q < 7 < dista(Sa,() N ©, MyY) + q.

m:|og<1+6(ﬁj—z?l2'j)>.

Then for all W C MS\N) we have
A N a G(J,A) —m-dis N0,
HP/\q(I)X@(H/(\ ) _ E) IX\U ’ S %e d t/\(SAq()m@ \U)

+ C2(-;,A) Ze—m(l—%> max{|r—i|,} Pr_ (H/(\N) 3 E>—1 o
reh
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Regular Intervals

Lemma: Regular Intervals Estimate

Let E € I15. Assume that the interval A, is (1, N)-reduced. Let m satisfy

6‘“<m§|og<1+w>.

4J6q1

Let i,j € A with |j — i] < R —2¢ so that Ay(i) C Ar(j), and suppose that
the interval A(i) is (m, E)-regular. Then for sufficiently large L,

1P Ra(E)PY

—m'(R+1—|j—i|) —m’ max{|r—i|,¢T} — +
< max{e ,iga}\\i(e HP, RAL(E)P/\R(J')H}

where m’ > m(1 — C¢~(7=6-1)),
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Buffered Sets (optional)

Definition: (m,E)-Buffer

Interval T C Ay is called an (m, E)-buffer if for all s € 9T we have that
A¢(s) is an (m, E)-regular interval. In this case we set T/ = T\ oM T.

Lemma: Buffered Set Estimate

Let E € 5, Apis (1,N)-reduced, T C Ay be an (m, E)-buffer, where m
satisfies the inequality, j € Ay and T C Ag(j). Assume

dist(E, o(Ha,\o7)) > e~L7. Then there exist s € Op, T such that for all
g € T we have

|Py RUE)PL,

< ol? —m'(R+1~|st—jl) =il e fl=sii 7 o= +
Se max{e  maxe 1P RLU(E)PN iyl ¢ -

v
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The Starting Condition

Theorem: Starting Condition

Given A >2J, A > 0and § € (0,1). Suppose that L satisfies,
max{zu_Q1 (1 - %) L_CI7 e_éLﬁ} <A
i

_ 1 (A —2))
L™ < =1 1+ —
<3og< + 4JQ; )

el < AN

Let m= Z min {1 log (1 + 6(4AJZ)21J)>} . Then if L is sufficiently large,

. —4mL—1B
setting 6, = min{2mLTe~4mL—L" ¢

P{R(m, L, I(E,0,),u,v)} >1— e forall u,v € Z with |u— v| > 2L

~L7} for all E € h 5 we have
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The Multiscale Analysis

Theorem: Induction on Scales

Given 0 € (0,1) and 0 < ¢ <1, let A >2J and A > 0, the scale Ly, and
mq satisfy the hypothesis of the starting condition. Consider an interval
I C s, and suppose we have

P{R(mo, Lo, l,u,v)} >1— e~L5 for all u,v € Z with |u — v| > 2L,.
Then, if Lo is sufficiently large, setting Lx+1 = L], we have

P{R(my, L, I, u,v)} > 1 — e Lk for all u,v € Z with |u— v| > 2Ly,

for all k =0,1,... Also my is a decreasing sequence with my > mg/2.
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The Multiscale Analysis

Theorem: Induction on Scales

Given 0 € (0,1) and 0 < ¢ <1, let A >2J and A > 0, the scale Ly, and
mq satisfy the hypothesis of the starting condition. Consider an interval
I C s, and suppose we have

P{R(mo, Lo, l,u,v)} >1— e~L5 for all u,v € Z with |u — v| > 2L,.
Then, if Lo is sufficiently large, setting Lx+1 = L], we have

P{R(my, L, I, u,v)} > 1 — e Lk for all u,v € Z with |u— v| > 2Ly,

for all k =0,1,... Also my is a decreasing sequence with my > mg/2.

@ Proof by first estimating the size/amount of non-regular intervals,

@ then iterating the results for buffer-sets and regular intervals to prove
regularity for one of the larger intervals.
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Thank you.
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Extra Material
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Finite XXZ-Spin Systems

Let A = (V,E) be a finite graph. We will consider operators on the tensor

product
H/\ _ ® (C2J+1.

veN

XXZ two site Hamiltonian
Let u,v € V with u ~ v then for A > 2J > 0,

huy = — ~(SLS} + 5252) — $383

Particle Number

N =2J— 83 =diag(0,1,2,...,2J).

A\
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The XXZ Hamiltonian

Adjusted two site Hamiltonian

- 1
huy = hyy — JNy + Ny) = —=NN, — ﬁ(Sjs; +S,S)

The Full Hamiltonian

Hp = Ap + 2JNA + AV,
I:I/\: Z Bu,Va N/\:ZNU7 V/\,w:ZWuNu

u,ve& uey uey
v
Conservation and Decomposition

2J7£(N)
[Ng,Hg] =0 = Hp = @ HS\N)
N=0

Lee Fisher (UCI) MSA for the Spin-J Chain May 25, 2022 18 /28



Interesting Properties 1. Bounds and Minimizers

Lemma: Relative Bounds
—4JWp < Ap < 4IWp
(1= %) Wa < Ha < (14 ) Wa

Cite Christoph.

Lemma: Minimizers of W.
Let A be a finite interval and let N € N.

W) _ {2J’V— L5151 N<4J

| A\

O T )42 N>4J

A\

Proof cite Christoph and myself. Structure minimal configurations are
known but not important for this talk.
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Interesting Properties 2. Energy Intervals

ML = {m e M (" (m) < 42 + 20k}
Qi = 4J° + 2Jk.

k=20 K) a0 - %)
o = (42 (1-F) . (Q—0) (1 - F)]
P,(\{\Q is the orthogonal projection onto 62(M$\’7Vk))

Conjecture: Clusters and W

For all N > 4kJ, m € MS\Nk) if and only if m is a configuration with at most
k connected components. The case for k = 1 is known and proven in [?7].
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Interesting Properties 3. Lifting the Spectrum

Definition: The Lifted Operator
H/(\I,\/? = H/(\N) +(Qe—1)(1- %) P/(\{\,’(),

Lemma: Lifting the Spectrum (N > 0)

Hiy = Qe(1-%).

v

From Lemma: Relative Bounds

Ha, v
’2_/ > W+ (Qk - 1)’D/(\,k)
1-2)
—(N
= (W+(@Q-1PE) ALY + (W+(Q - 1P ) PAY

> QP + WP > .

v
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Equivalence to a Schrodinger Operator 1. Adjacency Op

The Equivalence

U HY (UM) =

N N (N
2A AWM + W+ av ) = A

>
>
A\

Weighted Adjacency Operator

(A F)m) = Y w(m,n)f(n)
w(m,n) = H (J(m(x) +n(x) +1) — m(x)n(x))1/2
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Equivalence to a Schrodinger Operator 2. The Potentials

- 1
AR = = AN+ W i)

The W function

{i,i+1}€&(N)

WM F)(m) = WM (m)f(m) = (2JN 3 m(i)m(i—i—l)) f(m)

The Random Potential

(VAVF)(m) = Vau(m)f(m) = (Zm(xm) f(m)

xEN

| \

wy i.i.d Holder cont, sup,cgppu{[a, a + t]} < Kt® for all t € [0,1].
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Step 1. Large Deviation 1.

Definition: A, is (1, N')-reduced

if for all N > ¢¢',
AP > @i (1- %) ALY,

HY > (1-2)w v,
= [(1-Z)W+ AV P + [(1 - Z) W+ AV, ALY
> (1- %) (47 + @) A1+( )QPA1>Q(—%)'
{A¢is (1, N)-reduced} C {h Na(HM) =0 for all N > ¢}

Theorem: (1, N')-reduced probability estimate

P{A; is (1, N')-reduced} > 1 — et
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Target Theorem Proof Strategy

Lﬂ, need to control the

@ (m, E)-regular requires dist(E, o (Hp,(j))) > e~
probability.
o Reducedness and Wegner Estimates.

© Need to be able to move between scales. If a regular box sits inside of
larger box; what can be said about the “Greens function” on the
larger box?

o Combes-Thomas estimates and initial localization lemmas.
© What about intervals which are not regular?

o Need to estimate the probability of this.
o Need to estimate the size of the resolvent here too.

@ Does the “large enough” scale Ly actually exist?
e The starting condition.

O |If an interval of size L] contains a large amount of regular intervals of
size Lo, then the larger interval is also regular.

2
Q Induct on Lo, ie Lo, L§, L] ,... then move to arbitrary scales.
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Step 1. Large Deviation 2.

Lemma: Wegner Estimate

Let / be an open interval such that / C /;. Then

P{oi(HM) # 0} < K|I|* A2+

Notice in particular,

P{oj(Hp) # 0} < P{a,(H,(\N)) # () for some N < ZC/}
+P{Ais not (1,N') — reduced}

< K|PA R gt

Suppose E € 15 and | = (E — e_éﬁ, E+ e‘gﬁ). Finishes Step 1.
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Step 5. The Multiscale Analysis 2. Proof Sketch part 1.

o Let Sp = 2| £(r=1)¢ ],
o Careful reasoning and comparing with the R(...) event in the
hypothesis can give an estimate

P{A, has at least Sy nonregular disjoint subintervals} < e L

o Estimate the size of the buffer, T, required for w in the
complimentary event.

1T < 66(S;+1) < 1200761 <7,

@ Use Wegner and large deviation estimates to control the probability
that dist(E, o (Hp, x)) > e~ in for all K € K, a large collection of
subintervals.

@ Pick w so that Ay is (1, V) reduced, this occurs with high probability.
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Step 5. The Multiscale Analysis 3. Proof Sketch part 2.

@ Once w is chosen in the high probability set we can iterate the
localization and buffered subsets lemmas.

o Let
G(r) = ||P; (HL— E)_IP/J(R(I.)H for r € Ap.

@ The Localization lemma,
. —m® —|j—i —m® —jleT
G(J)gmax{e MO RHL 1) 1y o= max{lr—il¢ }G(r)}.

refp

@ We can iterate the previous equation to get,

G(I) < e—m(z)(|r*—i|—2é"f*)eL5 < e—m(z)(R—4£7*)eL5 < e—m(3)(R+1).

@ The desired bound for (m®®), E)-regularity.
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