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Context for the XXZ Spin-J Project

Previous results:

Beaud and Warzel (2017), and Elgart, Klein, and Stolz (2017) proved
localization in the droplet spectrum (bottom of the spectrum) for the
XXZ spin-1/2 chain via the fractional moment method. Elgart, Klein,
and Stolz also proved dynamical exponential clustering of the averaged
correlations of local observables and some proper spin chain
manifestations of localization.
Recently Klein and Elgart developed a multiscale analysis from which
they derive localization for the XXZ spin-1/2 chain.
Fischbacher and Ogunkoya (2020) classified the minimal configurations
and derived entanglement bounds for the XXZ spin-J chain.

This presentation:

Localization in the droplet spectrum of the Spin-J quantum spin chain.
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The XXZ Model

Hω =
∑
i∈Z

(
J2 − 1

∆
(S1

i S
1
i+1 + S2

i S
2
i+1)− S3

i S
3
i+1

)
+ λ

∑
i∈Z

ωiNi

Formal operator on
⊗

i∈ZC2J+1.

A spin number J ∈ 1
2N =

{
1
2 , 1,

3
2 , . . .

}
∆ > 2J specifies the Ising phase of the XXZ - chain.

λ > 0 is the disorder parameter.

Let {ei}2Ji=0 be the canonical basis for C2J+1
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)
+ λ
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ωiNi

Pauli Spin-J Matrices

S−ei =

{√
2J + i(2J − 1)− i2ei+1 if i < 2J

0 if i = 2J

S+ei =

{√
i(2J + 1)− i2ei−1 if i > 0

0 if i = 0

S1 = 1
2(S

+ + S−), S2 = 1
2i (S

+ − S−)

S3 = diag(J, J − 1, . . . ,−J + 1,−J)
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)
+ λ
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ωiNi

N is the particle number operator.

N = 2J − S3 = diag(0, 1, 2, . . . , 2J).

ω = {ωi}i∈Z are i.i.d random variables with probability distribution µ
absolutely continuous, bounded density, and {0, 1} ⊂ suppµ ⊂ [0, 1].

Hω is self-adjoint on an appropriate Hilbert space H constructed from⊗
ZC2J+1.
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i+1)− S3

i S
3
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)
+ λ

∑
i∈Z

ωiNi

If Λ ⊂ Z (finite), then HΛ is appropriately defined on
⊗

ΛC2J+1

Total particle number operator

NΛ =
∑
i∈Λ

Ni .

We have that [NΛ,HΛ] = 0, particle numbers are conserved by HΛ.

Motivates H
(N)
Λ , the restriction of HΛ to an N-particle subspace.
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Projection Operators

Definition: Projections

P+
Λ :=

⊗
x∈Λ

πe0(x),

P−
Λ := 1− P+

Λ .

Here πe0(x) is the orthogonal projection onto ker(Nx).

P+
Λ is the orthogonal projection onto the state where no particles are

present in Λ (vacuum).

Conversely P−
Λ is the projection onto the space of configurations with

at least one particle in Λ.
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Target Theorem and Regularity

Definition: (m,E)-regular

Given E ∈ R and m > 0, an interval ΛL(j) is said to be (m,E )-regular if

m > L−κ, dist(E , σ(HΛL(j))) > e−Lβ

∥P−
i (HΛL(j) − E )−1P+

ΛR(i)∩ΛL(j)
∥ ≤ e−m(R+1) for all i ∈ ΛL(j) and R > Lτ .

The equation in red is not the Green’s function! This is the appropriate
substitute for this model.
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∥ ≤ e−m(R+1) for all i ∈ ΛL(j) and R > Lτ .

The equation in red is not the Green’s function! This is the appropriate
substitute for this model.

R(m, L, I , u, v) := {E ∈ I =⇒ ΛL(u) or ΛL(v) is (m,E )− regular.}
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ΛR(i)∩ΛL(j)
∥ ≤ e−m(R+1) for all i ∈ ΛL(j) and R > Lτ .

The equation in red is not the Green’s function! This is the appropriate
substitute for this model.

Theorem: The Multiscale Analysis

Fix 0 < ζ < 1, let ∆ > 2J, λ > 0, and δ ∈ (0, 1) and suppose that ∆ and
λ are large enough. Then there is L = L(∆, λ, δ) and m = m(∆, λ, δ)
such that for all L ≥ L and u, v ∈ Z with |u − v | > 2L we have

P{R(m, L, I1,δ, u, v)} ≥ 1− e−Lξ .
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such that for all L ≥ L and u, v ∈ Z with |u − v | > 2L we have

P{R(m, L, I1,δ, u, v)} ≥ 1− e−Lξ .

This theorem implies eigenfunction localization.
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Eigenfunction Localization

Definition: (m,I)-localizing

For I ⊂ I1,δ and m > 0 we will say that ΛL ⊂ Z is (m, I )-localizing if an
eigensystem {(φν , ν)}ν∈σ(HΛL

) is (m, I )-localized, that is, for all

ν ∈ σ(HΛL
) ∩ I there is jν ∈ ΛL such that φν is (jν ,m)-localized:

∥P−
i φν∥ ≤ e−m|i−jν | for all i ∈ ΛL with |i − jν | ≥ Lτ .

Event: Q(m, L, I , u) = {ΛL(u) is (m, I )− localizing for H}.
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Eigenfunction Localization

Theorem: Eigenfunction Localization

Fix 0 < ξ < 1, let ∆ > 2J, λ > 0, and δ ∈ (0, 1) and suppose that ∆ and
λ are large enough. Then there is L = L(∆, λ, δ) and m = m(∆, λ, δ)
such that for all L ≥ L and u ∈ Z we have

P{Q(m, L, I1,δ, u)} ≥ 1− e−Lξ .

Moreover if ω ∈ Q(m, L, I1,δ, u) and {φν , ν}ν∈σ(HΛL(u)
) is an eigensystem

for HΛL(u), then for all i , j ∈ ΛL(u) with |i − j | ≥ Lτ̃ (τ < τ̃ < 1),∑
ν∈σ(HΛL(u)

)∩I1,δ

∥P−
i φν∥∥P−

j φν∥ ≤ e−
m
2 |i−j |.
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Unitary equivalence to a Schrödinger Operator

U
(N)
Λ : (

⊗
i∈Λ

C2J+1
i )(N) → ℓ2(M

(N)
Λ ) unitary.

U
(N)
Λ H

(N)
Λ

(
U

(N)
Λ

)∗
= − 1

2∆
A
(N)
Λ +W(N)

Λ + λV
(N)
Λ,ω =: Ĥ

(N)
Λ

The Space of Configurations

M
(N)
Λ :=

{
m : Λ → {0, 1, . . . , 2J} :

∑
x∈Λ

m(x) = N

}
,

Configuration adjacency, m ∼ n:

∃{x0, x1} ∈ EΛ such that m(x0) = n(x0) + 1,

m(x1) = n(x1)− 1,

and m(x) = n(x) when x ∈ Λ \ {x0, x1}.
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Unitary equivalence to a Schrödinger Operator

U
(N)
Λ H

(N)
Λ

(
U

(N)
Λ

)∗
= − 1

2∆
A
(N)
Λ +W(N)

Λ + λV
(N)
Λ,ω =: Ĥ

(N)
Λ

Weighted Adjacency Operator

(A
(N)
Λ f )(m) =

∑
n:n∼m

w(m,n)f (n)

w(m,n) =
∏

x :m(x) ̸=n(x)

(J(m(x) + n(x) + 1)−m(x)n(x))1/2
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Unitary equivalence to a Schrödinger Operator

U
(N)
Λ H

(N)
Λ

(
U

(N)
Λ

)∗
= − 1

2∆
A
(N)
Λ +W(N)

Λ + λV
(N)
Λ,ω =: Ĥ

(N)
Λ

The W function

(W(N)
Λ f )(m) = W(N)

Λ (m)f (m) =

2JN −
∑

{i ,i+1}∈E(Λ)

m(i)m(i + 1)

 f (m)

The Random Potential

(V
(N)
Λ,ω f )(m) = VΛ,ω(m)f (m) =

(∑
x∈Λ

m(x)ωx

)
f (m)

Lee Fisher (UCI) MSA for the Spin-J Chain May 25, 2022 8 / 28



Unitary equivalence to a Schrödinger Operator

U
(N)
Λ H

(N)
Λ

(
U

(N)
Λ

)∗
= − 1

2∆
A
(N)
Λ +W(N)

Λ + λV
(N)
Λ,ω =: Ĥ

(N)
Λ

Q1 := 4J2 + 2J.

M
(N)
Λ,1 :=

{
m ∈ M

(N)
Λ : W(N)

Λ (m) < Q1

}
P
(N)
Λ,1 is the orthogonal projection onto ℓ2(M

(N)
Λ,1 )

H
(N)
0 ≥

(
1− 2J

∆

)
W(N)

I1 :=
[
4J2

(
1− 2J

∆

)
,Q1

(
1− 2J

∆

))
I1,δ :=

[
4J2

(
1− 2J

∆

)
, (Q1 − δ)

(
1− 2J

∆

)]
Configurations in M

(N)
Λ,1 have support with one connected component.

I1 is called the droplet spectrum.
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Large Deviation Estimates

Definition: Λℓ is (1,N )-reduced

λVωP
(N)
Λℓ,1

≥ Q1

(
1− 2J

∆

)
P
(N)
Λℓ,1

for all N > ℓζ
′
. (0 < ζ ′ < ζ < 1)

{Λℓ is (1,N )-reduced} ⊂ {I1 ∩ σ(H
(N)
Λ ) = ∅ for all N > ℓζ

′}.

Theorem: (1,N )-reduced probability estimate

P{Λℓ is (1,N )-reduced} ≥ 1− e−cµℓζ
′
.

If Λℓ is (1,N )-reduced then for localization we only worry about
N ≤ ℓζ

′
.
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Deterministic Lemma

Lemma: A Deterministic Estimate.

Let Λ = ΛL(i), E ∈ I1,δ \ σ(H
(N)
Λ ), Θ ⊂ M

(N)
Λ , 0 ≤ q ≤ ℓ ≤ L,

SΛq(i) ∩Θ ⊂ (M
(N)
Λ,1 )

c , and

q < ℓ̃ ≤ distΛ(SΛq(i) ∩Θ,M
(N)
Λ,1 ) + q.

m = log

(
1 +

δ(∆− 2J)

4JQ1

)
.

Then for all Ψ ⊂ M
(N)
Λ we have∥∥∥P−

Λq(i)
χΘ(H

(N)
Λ − E )−1χΨ

∥∥∥ ≤ C1(J,∆)
δ e−m·distΛ(SΛq (i)∩Θ,Ψ)

+ C2(J,∆)
δ

∑
r∈Λ

e
−m

(
1−q

ℓ̃

)
max{|r−i |,ℓ̃}

∥∥∥∥P−
r

(
H

(N)
Λ − E

)−1
χΨ

∥∥∥∥
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Regular Intervals

Lemma: Regular Intervals Estimate

Let E ∈ I1,δ. Assume that the interval ΛL is (1,N )-reduced. Let m satisfy

ℓ−κ < m ≤ log

(
1 +

δ(∆− 2J)

4JQ1

)
.

Let i , j ∈ ΛL with |j − i | < R − 2ℓ so that Λℓ(i) ⊂ ΛR(j), and suppose that
the interval Λℓ(i) is (m,E )-regular. Then for sufficiently large L,

∥P−
i RΛL

(E )P+
ΛR(j)

∥

≤ max

{
e−m′(R+1−|j−i |),max

r∈ΛL

e−m′ max{|r−i |,ℓτ}
∥∥∥P−

r RΛL
(E )P+

ΛR(j)

∥∥∥}
where m′ ≥ m(1− Cℓ−(τ−β−κ)).
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Buffered Sets (optional)

Definition: (m,E)-Buffer

Interval Υ ⊂ ΛL is called an (m,E )-buffer if for all s ∈ ∂ΛLΥ we have that
Λℓ(s) is an (m,E )-regular interval. In this case we set Υ′ = Υ \ ∂ΛLΥ.

Lemma: Buffered Set Estimate

Let E ∈ I1,δ, ΛL is (1,N )-reduced, Υ ⊂ ΛL be an (m,E )-buffer, where m
satisfies the inequality, j ∈ ΛL and Υ ⊂ ΛR(j). Assume

dist(E , σ(HΛL\∂Υ)) > e−Lβ . Then there exist sΥ ∈ ∂ΛL
Υ such that for all

q ∈ Υ′ we have

∥P−
q RL(E )P

+
ΛR(j)

∥

≲ eL
β
max

{
e−m′(R+1−|sΥ−j |),max

r∈ΛL

e−m′ max{|r−sΥ|,ℓτ}∥P−
r RL(E )P

+
ΛR(j)

∥
}
.
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The Starting Condition

Theorem: Starting Condition

Given ∆ > 2J, λ > 0 and δ ∈ (0, 1). Suppose that L satisfies,

max

{
4JQ1

µ̄

(
1− 2J

∆

)
L−ζ′ , e−

1
6
Lβ
}

≤ λ

e−Lβ <
δ

2

(
1− 2J

∆

)
L−κ <

1

3
log

(
1 +

δ(∆− 2J)

4JQ1

)
eL

ζ′′ ≤ ∆λ

Let m = 1
4 min

{
1, log

(
1 + δ(∆−2J)

4JQ1

)}
. Then if L is sufficiently large,

setting θL = min{2mLτe−4mL−Lβ , e−Lβ}, for all E ∈ I1,δ we have

P{R(m, L, I (E , θL), u, v)} ≥ 1− e−Lζ for all u, v ∈ Z with |u − v | > 2L.
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The Multiscale Analysis

Theorem: Induction on Scales

Given δ ∈ (0, 1) and 0 < ζ < 1, let ∆ > 2J and λ > 0, the scale L0, and
m0 satisfy the hypothesis of the starting condition. Consider an interval
I ⊂ I1,δ, and suppose we have

P{R(m0, L0, I , u, v)} ≥ 1− e−Lζ0 for all u, v ∈ Z with |u − v | > 2L0.

Then, if L0 is sufficiently large, setting Lk+1 = Lγk , we have

P{R(mk , Lk , I , u, v)} ≥ 1− e−Lζk for all u, v ∈ Z with |u − v | > 2Lk ,

for all k = 0, 1, . . . Also mk is a decreasing sequence with mk ≥ m0/2.

Proof by first estimating the size/amount of non-regular intervals,

then iterating the results for buffer-sets and regular intervals to prove
regularity for one of the larger intervals.
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Thank you.
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Extra Material
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Finite XXZ-Spin Systems

Spin Systems

Let Λ = (V, E) be a finite graph. We will consider operators on the tensor
product

HΛ =
⊗
v∈Λ

C2J+1.

XXZ two site Hamiltonian

Let u, v ∈ V with u ∼ v then for ∆ > 2J > 0,

hu,v = J2 − 1

∆
(S1

uS
1
v + S2

uS
2
v )− S3

uS
3
v

Particle Number

N = 2J − S3 = diag(0, 1, 2, . . . , 2J).

Lee Fisher (UCI) MSA for the Spin-J Chain May 25, 2022 17 / 28



The XXZ Hamiltonian

Adjusted two site Hamiltonian

h̃u,v = hu,v − J(Nu +Nv ) = −NuNv −
1

2∆
(S+

u S−
v + S−

u S+
v )

The Full Hamiltonian

HΛ = H̃Λ + 2JNΛ + λVΛ,ω

H̃Λ =
∑
u,v∈E

h̃u,v , NΛ =
∑
u∈V

Nu, VΛ,ω =
∑
u∈V

ωuNu

Conservation and Decomposition

[NG ,HG ] = 0 =⇒ HΛ =

2J#(Λ)⊕
N=0

H(N)
Λ
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Interesting Properties 1. Bounds and Minimizers

Lemma: Relative Bounds

−4JWΛ ≤ AΛ ≤ 4JWΛ(
1− 2J

∆

)
WΛ ≤ HΛ ≤

(
1 + 2J

∆

)
WΛ.

Cite Christoph.

Lemma: Minimizers of W .

Let Λ be a finite interval and let N ∈ N.

W(N)
0 =

{
2JN − ⌊N2 ⌋⌈

N
2 ⌉ N < 4J

4J2 N ≥ 4J

Proof cite Christoph and myself. Structure minimal configurations are
known but not important for this talk.
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Interesting Properties 2. Energy Intervals

M
(N)
Λ,k :=

{
m ∈ M

(N)
Λ : W(N)

Λ (m) < 4J2 + 2Jk
}

Qk = 4J2 + 2Jk .

Ik :=
[
4J2

(
1− 2J

∆

)
,Qk

(
1− 2J

∆

))
Ik,δ :=

[
4J2

(
1− 2J

∆

)
, (Qk − δ)

(
1− 2J

∆

)]
P
(N)
Λ,k is the orthogonal projection onto ℓ2(M

(N)
Λ,k )

Conjecture: Clusters and W

For all N ≥ 4kJ, m ∈ M
(N)
Λ,k if and only if m is a configuration with at most

k connected components. The case for k = 1 is known and proven in [??].
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Interesting Properties 3. Lifting the Spectrum

Definition: The Lifted Operator

H
(N)
Λ,k := H

(N)
Λ + (Qk − 1)

(
1− 2J

∆

)
P
(N)
Λ,k .

Lemma: Lifting the Spectrum (N > 0)

H
(N)
Λ,k ≥ Qk

(
1− 2J

∆

)
.

Proof. From Lemma: Relative Bounds

H
(N)
Λ,k(

1− 2J
∆

) ≥ W + (Qk − 1)P
(N)
Λ,k

=
(
W + (Qk − 1)P

(N)
Λ,k

)
P
(N)
Λ,k +

(
W + (Qk − 1)P

(N)
Λ,k

)
P
(N)
Λ,k

≥ QkP
(N)
Λ,k +WP

(N)
Λ,k ≥ Qk .
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Equivalence to a Schrödinger Operator 1. Adjacency Op

The Equivalence

U
(N)
Λ H

(N)
Λ

(
U

(N)
Λ

)∗
= − 1

2∆
A
(N)
Λ +W(N)

Λ + λV
(N)
Λ,ω =: Ĥ

(N)
Λ

Weighted Adjacency Operator

(A
(N)
Λ f )(m) =

∑
n:n∼m

w(m,n)f (n)

w(m,n) =
∏

x :m(x) ̸=n(x)

(J(m(x) + n(x) + 1)−m(x)n(x))1/2
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Equivalence to a Schrödinger Operator 2. The Potentials

Ĥ
(N)
Λ = − 1

2∆
A
(N)
Λ +W(N)

Λ + λV
(N)
Λ,ω

The W function

(W(N)
Λ f )(m) = W(N)

Λ (m)f (m) =

2JN −
∑

{i ,i+1}∈E(Λ)

m(i)m(i + 1)

 f (m)

The Random Potential

(V
(N)
Λ,ω f )(m) = VΛ,ω(m)f (m) =

(∑
x∈Λ

m(x)ωx

)
f (m)

ωx i.i.d Hölder cont, supa∈Rµ{[a, a+ t]} ≤ Ktα for all t ∈ [0, 1].
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Step 1. Large Deviation 1.

Definition: Λℓ is (1,N )-reduced

if for all N > ℓζ
′
,
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1− 2J

∆
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.

{Λℓ is (1,N )-reduced} ⊂ {I1 ∩ σ(H
(N)
Λ ) = ∅ for all N > ℓζ

′
.}

Theorem: (1,N )-reduced probability estimate

P{Λℓ is (1,N )-reduced} ≥ 1− e−cµℓζ
′
.
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Target Theorem Proof Strategy

1 (m,E )-regular requires dist(E , σ(HΛL(j))) > e−Lβ , need to control the
probability.

Reducedness and Wegner Estimates.

2 Need to be able to move between scales. If a regular box sits inside of
larger box; what can be said about the “Greens function” on the
larger box?

Combes-Thomas estimates and initial localization lemmas.

3 What about intervals which are not regular?

Need to estimate the probability of this.
Need to estimate the size of the resolvent here too.

4 Does the “large enough” scale L0 actually exist?

The starting condition.

5 If an interval of size Lγ0 contains a large amount of regular intervals of
size L0, then the larger interval is also regular.

6 Induct on L0, ie L0, L
γ
0 , L

γ2

0 , . . . then move to arbitrary scales.
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Step 1. Large Deviation 2.

Lemma: Wegner Estimate

Let I be an open interval such that I ⊂ I1. Then

P{σI (H
(N)
Λ ) ̸= ∅} ≤ K |I |αλ−αℓ2Q1+1

Notice in particular,

P {σI (HΛ) ̸= ∅} ≤ P
{
σI (H

(N)
Λ ) ̸= ∅ for some N ≤ ℓζ

′
}

+ P {Λ is not (1,N )− reduced}

≤ K |I |αλ−αℓ2Q1+1 + e−cµℓζ
′
.

Suppose E ∈ I1,δ and I = (E − e−ℓβ ,E + e−ℓβ ). Finishes Step 1.
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Step 5. The Multiscale Analysis 2. Proof Sketch part 1.

Let Sℓ = 2⌊ℓ(γ−1)ζ∗⌋.
Careful reasoning and comparing with the R(. . . ) event in the
hypothesis can give an estimate

P{ΛL has at least Sℓ nonregular disjoint subintervals} ≤ e−Lζ

Estimate the size of the buffer, Υ, required for ω in the
complimentary event.

|Υ| ≤ 6ℓ(Sℓ + 1) ≤ 12ℓ(γ−1)ζ∗−1 < Lτ .

Use Wegner and large deviation estimates to control the probability
that dist(E , σ(H ′

ΛL,K
)) > e−Lβ in for all K ∈ K, a large collection of

subintervals.

Pick ω so that ΛL is (1,N ) reduced, this occurs with high probability.
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Step 5. The Multiscale Analysis 3. Proof Sketch part 2.

Once ω is chosen in the high probability set we can iterate the
localization and buffered subsets lemmas.

Let
G (r) = ∥P−

r (HL − E )−1P+
ΛR(i)

∥ for r ∈ ΛL.

The Localization lemma,

G (j) ≤ max

{
e−m(1)(R+1−|j−i |),max

r∈ΛL

e−m(1) max{|r−j |,ℓτ}G (r)

}
.

We can iterate the previous equation to get,

G (i) ≤ e−m(2)(|r∗−i |−2ℓγ∗ )eL
β ≤ e−m(2)(R−4ℓγ∗ )eL

β ≤ e−m(3)(R+1).

The desired bound for (m(3),E )-regularity.
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