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Plan of the talk

1. The vibration of half-infinite inhomogeneous string: some numerics.
2. Krein's string.

3. Strings: Szeg6 condition on spectral measure and its characterizations,
both through mass distribution and through the dynamics.

4. 1d Dirac.

5. How did we get there? Scattering for canonical systems: sharp results.
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1. Non-homogeneous string and its vibration.

The free motion of the vibrating string on half-line with a given initial
displacement wy is described by the solution u = w(§,t) of the string
equation

p(§ur(§,t) = uge (€, 1),
u(§,0) = uo(§), £€0,00), teRy,
ui(€,0) = ueg(0,t) = 0.

This equation admits classical solution under the additional assumptions on
the density p and ug. For the homogeneous string with positive constant
density pg, the propagation of the wave with the initial profile ug has the
well-known “traveling wave” form
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given by d'Alembert’s formula:

up(§ + at) + ug(§ — at) >0 7 g
9 - F0 9

t =
2 )

u(é,t) =

where we extended uq to the whole real line R as an even function.
Moreover, if ug € L?(R,), then

u(&,t) = FY (€ — at) + o(1), t — +o0, (1)

for the function Fég) = 0.5u9(&) € L2(R), where the remainder “o(1)" is
with respect to the L?(R; )-norm.

What happens if the wave is non-homogeneous? Look at some numerics
first.
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Figure 1.

The first graph shows the density of the string. For each interval

[n,n+ 1] = E, UF,, E, carries the density 1, F}, carries the density 2,
and |F,| ~ 1/y/n + 1. As time increases, only a vanishing portion of the
wave (shown in the red circle) propagates with the maximal speed.

Z |EFyn| = 400

n=0

Notice that

which will make the difference later.
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Figure 2.

The first graph shows the density of the string. For each interval

[n,n+ 1] = E, UF,, E, carries the density 1, F}, carries the density 2.
This time, |F,,| ~ 1/(n 4+ 1)2. As time increases, a non-vanishing portion
of the wave (shown in the red circle) propagates with the maximal speed.

Z]Fn\ < 0o

n=0

Notice that

in this case and it seems the “frontrunner does not fade away”.

Disclaimer: the times of snapshots in Figure 1 and Figure 2 are different.
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Can we formulate the sharp condition on p that will tell when the wave
“propagates”? We will need some background to answer that question fully.

2. Krein strings.

To define the mathematical model of a vibrating string, one starts with
prescribing its length L € (0, 00| and the distribution function

M :[0,L) — R4. Given £ € [0, L), the number M (§) is interpreted as the
mass of the [0, ] piece. Define the Lebesgue-Stieltjes measure m by
m[0,&] = M (&) and write its decomposition into the absolutely continuous
and singular parts: m = mye + Mg = p(&)d€ + mg. Denote

M(L—) =lim¢_p e, M(€). We will call the [M, L] pair proper if M and
L satisfy the following conditions

L+ M(L-) = oo,
0< M) <M(L-), VEe(0,L).

The second condition can be interpreted as the string’s left and right ends
being “heavy”.
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The Krein's string is a non-negative self-adjoint differential operator,
formally defined in the Hilbert space L2[0, L) by

d d

SM = _%dif’ 5 € [07L)a (2)

with suitable boundary condition (we consider Neumann b.c. at zero).
There is a canonical way to define the Weyl-Titchmarsh function ¢ such

that ;
o= [ 12,

where o is the spectral measure of the string [M, L], a measure on
R4 = [0, +00) satisfying condition

d
O</ a(x><oo.
R+1+$
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There is a bijection between strings and such o. However, some classes of
spectral measures are special.

3. Szegé class and its characterizations.
Definition. We say that o € Sz(R) if (zx+1)~! € L'(0) and

log o’ (x)

R, VZ(z +1)

We call it the Szeg6 class for Krein strings. It has important applications
in Kolmogorov-Wiener theory of prediction for Gaussian stochastic
processes. How can we characterize it?

dxr > —o0.
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(A). Direct characterization in terms of [M, L], i.e., the string itself.
We need some notation first.

(2
TO)(€) = / Vo) ds,  L® =f{e: TOE) = n},

for £,m € Ry. In physics literature, the former function is sometimes
referred to as eikonal or optical metric.

Theorem (Direct characterization of Szeg6 measures for strings)

Let [M, L] be a proper string, and let {n,} be an increasing sequence of
positive numbers such that ¢y < Np11 — N < ¢ for all n > 0 and some
positive c1 and cy. Then, we have o € Sz(Ry.) if and only if \/p ¢ L'(R})

and
+oo

> (A6, - AM, — (Am)?) < +o0, (3)

n=0

where &, = Lnn A&y = &nya — &n AMy = M (Eny2) — M (&),
Ann = n+2 — Mn-
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Some examples. In our first example, mg(R ;) = 0 and the density p takes
two positive values: a and b. So, we have

a, TEE,
,0(7’):{[)’ TeRL\E, “)

for some o-finite set £ C R with respect to Lebesgue measure. We
interpret such strings as those made of two types of material.

Lemma

The string with mg(R) = 0 and density p of the form (4) has spectral
measure o in Sz(R.) iff either a = b (the string is homogeneous) or one of
the sets E, R\ E has finite Lebesgue measure.

Hence, the string on Figure 1 is not in Szeg6 class, the string on Figure 2 is
in Szegé class.

Sergey Denisov, University of Wisconsin-Madison Szegd condition, scattering, and vibration ...



Let [M, 0] be the string with m = d +mg on Ry. Then, o € Sz(Ry.) iff
mS(R+) < 0.

(B). Dynamical characterization of the Szegé case, i.e., 0 € Sz(R,).

We look for the weak solution to the problem

m(&uy (&, t) = Ué&(fut)7
U(S,O) = u0(§)7 ¢ e [O,L), te Ry,
u(€,0) = ug(0,t) = 0.

defined as u = cos(v/Sart)up by the Spectral Theorem.
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Recall that our topology is L2[0, L), i.e., u,ug € L2[0, L).

For compactly supported initial data ug, define the front of the
propagating wave u = u(§,t) at the moment ¢ as

fr, =inf{a > 0: u({,t) =0,VE > a} . (5)

Theorem

Let [M, L] be a proper string and let ug € L2[0, L) be a nonzero
compactly supported initial profile. Then, we have

_ 79
ftt - Lchth’

for every t > 0.
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The theorem below provides a dynamical characterization of the Szeg6
class Sz(R).

Theorem (Dynamical characterization of the Szegé class)

Let [M, L] be a proper string and let o be its spectral measure. Then

o € Sz(Ry) if and only if for some (and then for every) nonzero compactly
supported initial profile ug € L?(m) and for some (and then for every)

£ > 0 we have

lim sup Hu(a t)||L2(m,[ftt_Z,ftt]) > 0. (6)

t—+o0

Put differently, the result says that the spectral measure of a string [M, L]
belongs to Sz(R. ) if and only if the part of wave u near its wavefront does
not vanish as t — 400, i.e., “the frontrunner does not fade away”.
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To summarize, we obtained the following characterizations of Szegé class

Direct Dynamical
) =

Condition (3) <= o € Sz(R4 Condition (6)

and that answers our original question.

Suppose o € Sz(R4). Can we say more about the asymptotics of u near its
front? Yes, we skip formulation of the most general result and instead give
an example. Recall the asymptotics for the free case, i.e., (see (1) above)

u(£,t):F1§g)(£—at)—|—o(l), t — 400, a:p61/2.
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Let [M,c] be the string with m = d¢ 4+ mg on Ry, and let ug € L?(m)
have compact support, ug # 0. Then,

fr, =feo+t,  t>0.
If mg(Ry) = oo, we have o ¢ Sz(R.) and
Jin Jul] 22 (m, e, a2,y = 05
for every a > 0. In the case mg(R) < oo, we have o € Sz(Ry) and
m [u(€ |2 (m, e, —a,fe,]) = 05
tlg-noo ||U(§, t) - Fuo (5 - t) ||L2[ftt7a,ftt] =0,

for some F,, € L*(R), F,, # 0, and all a > 0.
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4. "Scattering for 1d Dirac” < Szegé class. Consider Dirac operator

0 ¢

DX:J8X+<q O)X, r>0, Xp(0)=0, J=(07),

with spectral measure . Real-valued potential ¢ € L. (RT).

loc

If u is the spectral measure for D, then the following conditions are
equivalent

Snso (o2 e [ h7tdr —4) < oo, hr) = 2l a0
)
p € Sz(R)pir, ie. (1+z%)~tlogy' € LY(R)

)

wave operators WE(D, Dg) = limy_, 1o e*Pe™ 0 exist
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5. Scattering for canonical systems. A Hamiltonian 7 on the positive
half-axis Ry = [0, 400) is a matrix-valued mapping of the form

i = <f}L11 :) , traceH(r) >0, detH(r) >0, forae 7€R,.
2

The functions hy, ho, h are real-valued and belong to L%OC(RJF). The
Hilbert space L?() is given by the inner product

(XYoo = | (HOX (.Y (7)) dr
The Hamiltonian # gives rise to an eigenvalue problem
J&6(r,z) = 2H(7)0(7,2), ©(0,2) = (}), TE€Ry, € C

for the suitably defined self-adjoint differential operator Dy.
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Important fact of Spectral Theory: in Hilbert space, every self-adjoint
operator with simple spectrum can be modeled by Dy, i.e., it is “mother of
all self-adjoint operators”.

Our results include:

e Define the Szegd class for canonical systems by requiring that the
associated spectral measure p € Sz(R), i.e., it satisfies

We characterize all # for which this is true.

e The dynamical characterization of Szegé class is obtained.

e We study the long-time evolution of the group e”P* and show that
properly defined modified wave operators exist iff u € Sz(R).

e The complete dynamical classification of all spectral types and the
corresponding subspaces are obtained.

e Applications to Krein strings and 1d Dirac equations.
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