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Plan of the talk

1. The vibration of half-in�nite inhomogeneous string: some numerics.

2. Krein's string.

3. Strings: Szeg® condition on spectral measure and its characterizations,

both through mass distribution and through the dynamics.

4. 1d Dirac.

5. How did we get there? Scattering for canonical systems: sharp results.
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1. Non-homogeneous string and its vibration.

The free motion of the vibrating string on half-line with a given initial

displacement u0 is described by the solution u = u(ξ, t) of the string

equation

ρ(ξ)utt(ξ, t) = uξξ(ξ, t),

u(ξ, 0) = u0(ξ), ξ ∈ [0,∞), t ∈ R+,

ut(ξ, 0) = uξ(0, t) = 0.

This equation admits classical solution under the additional assumptions on

the density ρ and u0. For the homogeneous string with positive constant

density ρ0, the propagation of the wave with the initial pro�le u0 has the

well-known �traveling wave� form
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given by d'Alembert's formula:

u(ξ, t) =
u0(ξ + at) + u0(ξ − at)

2
, t ⩾ 0, a = ρ

−1/2
0 ,

where we extended u0 to the whole real line R as an even function.

Moreover, if u0 ∈ L2(R+), then

u(ξ, t) = F (0)
u0

(ξ − at) + o(1), t → +∞, (1)

for the function F
(0)
u0 = 0.5u0(ξ) ∈ L2(R), where the remainder �o(1)� is

with respect to the L2(R+)�norm.

What happens if the wave is non-homogeneous? Look at some numerics

�rst.
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Figure 1.

The �rst graph shows the density of the string. For each interval

[n, n+ 1] = En ∪ Fn, En carries the density 1, Fn carries the density 2,

and |Fn| ∼ 1/
√
n+ 1. As time increases, only a vanishing portion of the

wave (shown in the red circle) propagates with the maximal speed.

Notice that ∑
n⩾0

|Fn| = +∞

which will make the di�erence later.
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Figure 2.

The �rst graph shows the density of the string. For each interval

[n, n+ 1] = En ∪ Fn, En carries the density 1, Fn carries the density 2.

This time, |Fn| ∼ 1/(n+ 1)2. As time increases, a non-vanishing portion

of the wave (shown in the red circle) propagates with the maximal speed.

Notice that ∑
n⩾0

|Fn| < ∞

in this case and it seems the �frontrunner does not fade away�.

Disclaimer: the times of snapshots in Figure 1 and Figure 2 are di�erent.
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Can we formulate the sharp condition on ρ that will tell when the wave

�propagates�? We will need some background to answer that question fully.

2. Krein strings.

To de�ne the mathematical model of a vibrating string, one starts with

prescribing its length L ∈ (0,∞] and the distribution function

M : [0, L) → R+. Given ξ ∈ [0, L), the number M(ξ) is interpreted as the

mass of the [0, ξ] piece. De�ne the Lebesgue�Stieltjes measure m by

m[0, ξ] = M(ξ) and write its decomposition into the absolutely continuous

and singular parts: m = mac +ms = ρ(ξ)dξ +ms. Denote

M(L−) = limξ→L,ξ<LM(ξ). We will call the [M,L] pair proper if M and

L satisfy the following conditions

L+M(L−) = ∞,

0 < M(ξ) < M(L−), ∀ξ ∈ (0, L).

The second condition can be interpreted as the string's left and right ends

being �heavy�.
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The Krein's string is a non-negative self-adjoint di�erential operator,

formally de�ned in the Hilbert space L2
m[0, L) by

SM = − d

dm

d

dξ
, ξ ∈ [0, L), (2)

with suitable boundary condition (we consider Neumann b.c. at zero).

There is a canonical way to de�ne the Weyl-Titchmarsh function q such

that

q(z) =

∫
R+

dσ(x)

x− z
,

where σ is the spectral measure of the string [M,L], a measure on

R+ = [0,+∞) satisfying condition

0 <

∫
R+

dσ(x)

1 + x
< ∞ .
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There is a bijection between strings and such σ. However, some classes of

spectral measures are special.

3. Szeg® class and its characterizations.

De�nition. We say that σ ∈ Sz(R+) if (x+ 1)−1 ∈ L1(σ) and∫
R+

log σ′(x)√
x(x+ 1)

dx > −∞.

We call it the Szeg® class for Krein strings. It has important applications

in Kolmogorov-Wiener theory of prediction for Gaussian stochastic

processes. How can we characterize it?
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(A). Direct characterization in terms of [M,L], i.e., the string itself.

We need some notation �rst.

T (S)(ξ) =

∫ ξ

0

√
ρ(s) ds, L(S)

η = inf{ξ : T (S)(ξ) = η},

for ξ, η ∈ R+. In physics literature, the former function is sometimes

referred to as eikonal or optical metric.

Theorem (Direct characterization of Szeg® measures for strings)

Let [M,L] be a proper string, and let {ηn} be an increasing sequence of

positive numbers such that c1 ⩽ ηn+1 − ηn ⩽ c2 for all n ⩾ 0 and some

positive c1 and c2. Then, we have σ ∈ Sz(R+) if and only if
√
ρ /∈ L1(R+)

and
+∞∑
n=0

(
∆ξn ·∆Mn − (∆ηn)

2
)
< +∞ , (3)

where ξn = L
(S)
ηn , ∆ξn = ξn+2 − ξn, ∆Mn = M(ξn+2)−M(ξn),

∆ηn = ηn+2 − ηn.
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Some examples. In our �rst example, ms(R+) = 0 and the density ρ takes

two positive values: a and b. So, we have

ρ(τ) =

{
a, τ ∈ E,

b, τ ∈ R+ \ E,
(4)

for some σ-�nite set E ⊆ R+ with respect to Lebesgue measure. We

interpret such strings as those made of two types of material.

Lemma

The string with ms(R+) = 0 and density ρ of the form (4) has spectral

measure σ in Sz(R+) i� either a = b (the string is homogeneous) or one of

the sets E, R+\E has �nite Lebesgue measure.

Hence, the string on Figure 1 is not in Szeg® class, the string on Figure 2 is

in Szeg® class.
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Lemma

Let [M,∞] be the string with m = dξ +ms on R+. Then, σ ∈ Sz(R+) i�

ms(R+) < ∞.

(B). Dynamical characterization of the Szeg® case, i.e., σ ∈ Sz(R+).

We look for the weak solution to the problem

m(ξ)utt(ξ, t) = uξξ(ξ, t),

u(ξ, 0) = u0(ξ), ξ ∈ [0, L), t ∈ R+,

ut(ξ, 0) = uξ(0, t) = 0.

de�ned as u = cos(
√
SM t)u0 by the Spectral Theorem.
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Recall that our topology is L2
m[0, L), i.e., u, u0 ∈ L2

m[0, L).

For compactly supported initial data u0, de�ne the front of the

propagating wave u = u(ξ, t) at the moment t as

frt = inf {a ⩾ 0 : u(ξ, t) = 0,∀ξ > a} . (5)

Theorem

Let [M,L] be a proper string and let u0 ∈ L2
m[0, L) be a nonzero

compactly supported initial pro�le. Then, we have

frt = L
(S)
fr0+t,

for every t > 0.
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The theorem below provides a dynamical characterization of the Szeg®

class Sz(R+).

Theorem (Dynamical characterization of the Szeg® class)

Let [M,L] be a proper string and let σ be its spectral measure. Then

σ ∈ Sz(R+) if and only if for some (and then for every) nonzero compactly

supported initial pro�le u0 ∈ L2(m) and for some (and then for every)

ℓ > 0 we have

lim sup
t→+∞

∥u(·, t)∥L2(m,[frt−ℓ,frt])
> 0. (6)

Put di�erently, the result says that the spectral measure of a string [M,L]

belongs to Sz(R+) if and only if the part of wave u near its wavefront does

not vanish as t → +∞, i.e., �the frontrunner does not fade away�.

Sergey Denisov, University of Wisconsin-Madison Szeg® condition, scattering, and vibration . . . 16 / 21



To summarize, we obtained the following characterizations of Szeg® class

Condition (3)
Direct⇐⇒ σ ∈ Sz(R+)

Dynamical⇐⇒ Condition (6)

and that answers our original question.

Suppose σ ∈ Sz(R+). Can we say more about the asymptotics of u near its

front? Yes, we skip formulation of the most general result and instead give

an example. Recall the asymptotics for the free case, i.e., (see (1) above)

u(ξ, t) = F (0)
u0

(ξ − at) + o(1), t → +∞, a = ρ
−1/2
0 .
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Proposition

Let [M,∞] be the string with m = dξ +ms on R+, and let u0 ∈ L2(m)

have compact support, u0 ̸= 0. Then,

frt = fr0 + t, t ⩾ 0.

If ms(R+) = ∞, we have σ /∈ Sz(R+) and

lim
t→∞

∥u∥L2(m,[frt−a,frt])
= 0,

for every a > 0. In the case ms(R+) < ∞, we have σ ∈ Sz(R+) and

lim
t→+∞

∥u(ξ, t)∥L2(ms,[frt−a,frt])
= 0,

lim
t→+∞

∥u(ξ, t)− Fu0(ξ − t)∥L2[frt−a,frt]
= 0,

for some Fu0 ∈ L2(R), Fu0 ̸= 0, and all a > 0.
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4. �Scattering for 1d Dirac� ⇔ Szeg® class. Consider Dirac operator

DX = J∂X +

(
0 q

q 0

)
X, τ ⩾ 0, X2(0) = 0, J =

(
0 −1
1 0

)
,

with spectral measure µ. Real-valued potential q ∈ L1
loc(R+).

Theorem

If µ is the spectral measure for D, then the following conditions are

equivalent∑
n⩾0

(∫ n+2
n h dτ ·

∫ n+2
n h−1dτ − 4

)
< ∞, h(τ) = e2

∫ τ
0 q(s) ds

⇕
µ ∈ Sz(R)Dir, i.e. (1 + x2)−1 logµ′ ∈ L1(R)

⇕
wave operators W±(D,D0) = limt→±∞ eitDe−itD0 exist
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5. Scattering for canonical systems. A Hamiltonian H on the positive

half-axis R+ = [0,+∞) is a matrix-valued mapping of the form

H =

(
h1 h

h h2

)
, traceH(τ) > 0, detH(τ) ⩾ 0, for a.e. τ ∈ R+.

The functions h1, h2, h are real-valued and belong to L1
loc(R+). The

Hilbert space L2(H) is given by the inner product

(X,Y )L2(H) =

∫ ∞

0

〈
H(τ)X(τ), Y (τ)

〉
C2 dτ.

The Hamiltonian H gives rise to an eigenvalue problem

J ∂
∂τΘ(τ, z) = zH(τ)Θ(τ, z), Θ(0, z) = ( 10 ) , τ ∈ R+, z ∈ C

for the suitably de�ned self-adjoint di�erential operator DH.
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Important fact of Spectral Theory: in Hilbert space, every self-adjoint

operator with simple spectrum can be modeled by DH, i.e., it is �mother of

all self-adjoint operators�.

Our results include:

• De�ne the Szeg® class for canonical systems by requiring that the

associated spectral measure µ ∈ Sz(R), i.e., it satis�es∫
R

logµ′

1 + x2
dx > −∞ .

We characterize all H for which this is true.

• The dynamical characterization of Szeg® class is obtained.

• We study the long-time evolution of the group eitDH and show that

properly de�ned modi�ed wave operators exist i� µ ∈ Sz(R).
• The complete dynamical classi�cation of all spectral types and the

corresponding subspaces are obtained.

• Applications to Krein strings and 1d Dirac equations.
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