Solve FOUR of the following problems.

1. (a) Show that \(L(f)(x) = \int_0^x t^2 f(t) dt \) defines a continuous linear mapping from \(C([0, 1]) \) into itself, and find its operator norm.

(b) Is the mapping \(L \) defined above compact? Why or why not?

2. Let \(H \) be a Hilbert space with \(\{e_n\}_{n \geq 1} \subset H \) a sequence and \(\{\lambda_n\}_{n \geq 1} \) a sequence of scalars.

 (a) State what it means for \(\{e_n\}_{n \geq 1} \subset H \) to be a complete orthonormal sequence.

 (b) If \(\{e_n\} \) is a complete orthonormal sequence, show that there exists a unique linear operator \(T \) on \(H \) such that \(Te_n = \lambda_n e_n \).

 (c) Show that \(T \) is bounded iff \(\{\lambda_n\} \) is.

 (d) When \(T \) is bounded, what is its norm in terms of \(\{\lambda_n\} \)?

3. (a) State the Banach fixed point theorem.

(b) Define the (nonlinear!) operator \(T \) mapping \(C[0, 1] \) into itself by

\[
(Tu)(t) = \int_0^t (u(x))^2 dx,
\]

and show that, although \(T \) is not a contraction on the closed unit ball, it is on the closed ball of radius \(\frac{1}{4} \).

(c) Does there exist a continuous function \(u \) such that \(Tu = u \)?

4. Let \(V \) be an inner product space.

 (a) State what it means for a sequence to converge \textit{weakly} in \(V \).

 (b) Show that, if \(V \) is also finite-dimensional and Hilbert, that every weakly convergent sequence is strongly convergent.

 (c) Prove or give a counterexample: If \(x_n \rightharpoonup x \) and \(y_n \rightharpoonup y \) as \(n \to \infty \) in a Hilbert space, then \((x_n, y_n) \to (x, y) \).
5. (a) State the Riesz Representation Theorem for a Hilbert space H over \mathbb{C}.

(b) Because this theorem associates to each member of H' a member of H, it defines a mapping T from H' into H. Show that the following properties hold for all $f, g \in H$ and all $\alpha \in \mathbb{C}$:

\[
T(f + g) = T(f) + T(g) \\
T(\alpha f) = \overline{\alpha}T(f) \\
\|T(f)\| = \|f\|
\]