Solve FOUR of the following problems.

1. (a) Show that \(L(f)(x) = \int_0^x f(t)dt \) defines a continuous linear mapping from \(C([0, 1]) \) into itself, and find its operator norm.

(b) Is the mapping \(L \) defined above compact? Why or why not?

2. (a) Let \(V \) be an inner product space. State what it means for \(\{x_i\}_{i=0}^\infty \) to be a complete orthogonal sequence in \(V \).

(b) Is \(\{(1, 1, 0, 0, \ldots), (1, -1, 0, 0, \ldots), (0, 0, 1, 1, 0, \ldots), (0, 0, 1, -1, 0, \ldots), \ldots\} \) a complete orthogonal sequence in \(\ell^2 \)? Why or why not?

3. (a) State the Banach fixed point theorem.

(b) Define the (nonlinear!) operator \(T \) mapping \(C[0, 1] \) into itself by

\[
(Tu)(t) = \int_0^t (u(x))^2\,dx,
\]

and show that, although \(T \) is not a contraction on the closed unit ball, it is on the closed ball of radius \(\frac{1}{4} \).

(c) Does there exist a continuous function \(u \) such that \(Tu = u \)?

4. Let \(V \) be an inner product space.

(a) State what it means for a sequence to converge weakly in \(V \).

(b) Show that, if \(V \) is also finite-dimensional and Hilbert, that every weakly convergent sequence is strongly convergent.

(c) Give an example of a weakly convergent sequence in an infinite-dimensional space that does not converge strongly. You should demonstrate the weak and lack of strong convergence.

5. (a) State the Riesz Representation Theorem for a Hilbert space \(H \) over \(\mathbb{C} \).

(b) Because this theorem associates to each member of \(H' \) a member of \(H \), it defines a mapping \(T \) from \(H' \) into \(H \). Show that the following properties hold for all \(f, g \in H \) and all \(\alpha \in \mathbb{C} \):

\[
T(f + g) = T(f) + T(g)
\]
\[
T(\alpha f) = \overline{\alpha} T(f)
\]
\[
\|T(f)\| = \|f\|
\]