"Creative thinking is more important than elaborate equipment--"

FRANK CARNEY, PH.D.
PROFESSOR OF GEOLGY
BAYLOR UNIVERSITY
1929-1934

Objectives of Geological Training at Baylor

The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of training geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research including that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring objective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department.

Cover: Isopach of the Fredericksburg Group.
Stratigraphy of the Fredericksburg Group, East Texas Basin

L. Marlow Anderson
The Baylor Geological Studies Bulletin is published by the Department of Geology at Baylor University. The Bulletin is specifically dedicated to the dissemination of geologic knowledge for the benefit of the people of Texas. The publication is designed to present the results of both pure and applied research which will ultimately be important in the economic and cultural growth of the State.
CONTENTS

<table>
<thead>
<tr>
<th>Abstract</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Purpose</td>
<td>5</td>
</tr>
<tr>
<td>Location</td>
<td>5</td>
</tr>
<tr>
<td>Methods</td>
<td>5</td>
</tr>
<tr>
<td>Previous Works</td>
<td>6</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>6</td>
</tr>
<tr>
<td>Regional Nature and Distribution of the Fredericksburg Group</td>
<td>8</td>
</tr>
<tr>
<td>East Texas basin</td>
<td>8</td>
</tr>
<tr>
<td>Northeast Texas</td>
<td>8</td>
</tr>
<tr>
<td>North Central Texas</td>
<td>8</td>
</tr>
<tr>
<td>Central Texas</td>
<td>9</td>
</tr>
<tr>
<td>West Central Texas</td>
<td>10</td>
</tr>
<tr>
<td>West Texas</td>
<td>10</td>
</tr>
<tr>
<td>Mexico</td>
<td>10</td>
</tr>
<tr>
<td>North American Interior</td>
<td>10</td>
</tr>
<tr>
<td>Stratigraphy of the Fredericksburg Group, East Texas Basin</td>
<td>11</td>
</tr>
<tr>
<td>Fredericksburg Group</td>
<td>11</td>
</tr>
<tr>
<td>Lithology</td>
<td>11</td>
</tr>
<tr>
<td>Contact Relationships</td>
<td>11</td>
</tr>
<tr>
<td>Distribution and Thickness</td>
<td>11</td>
</tr>
<tr>
<td>Paluxy Formation</td>
<td>11</td>
</tr>
<tr>
<td>Lithology</td>
<td>11</td>
</tr>
<tr>
<td>Contact Relationships</td>
<td>12</td>
</tr>
<tr>
<td>Distribution and Thickness</td>
<td>12</td>
</tr>
<tr>
<td>Walnut Formation</td>
<td>13</td>
</tr>
<tr>
<td>Lithology</td>
<td>13</td>
</tr>
<tr>
<td>Contact Relationships</td>
<td>14</td>
</tr>
<tr>
<td>Distribution and Thickness</td>
<td>15</td>
</tr>
<tr>
<td>Comanche Peak Formation</td>
<td>15</td>
</tr>
<tr>
<td>Lithology</td>
<td>15</td>
</tr>
<tr>
<td>Contact Relationships</td>
<td>16</td>
</tr>
<tr>
<td>Distribution and Thickness</td>
<td>16</td>
</tr>
<tr>
<td>Edwards Formation</td>
<td>16</td>
</tr>
<tr>
<td>Lithology</td>
<td>16</td>
</tr>
<tr>
<td>Contact Relationships</td>
<td>17</td>
</tr>
<tr>
<td>Distribution and Thickness</td>
<td>17</td>
</tr>
<tr>
<td>Goodland Formation</td>
<td>17</td>
</tr>
<tr>
<td>Lithology</td>
<td>17</td>
</tr>
<tr>
<td>Contact Relationships</td>
<td>17</td>
</tr>
<tr>
<td>Distribution and Thickness</td>
<td>19</td>
</tr>
<tr>
<td>Depositional History of Fredericksburg Group, East Texas Basin</td>
<td>19</td>
</tr>
<tr>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>Pre-Fredericksburg</td>
<td>22</td>
</tr>
<tr>
<td>Regional History</td>
<td>22</td>
</tr>
<tr>
<td>Fredericksburg Group</td>
<td>22</td>
</tr>
<tr>
<td>Depositional Environments</td>
<td>22</td>
</tr>
<tr>
<td>Structural Nature of Basin</td>
<td>27</td>
</tr>
<tr>
<td>Post-Fredericksburg</td>
<td>30</td>
</tr>
<tr>
<td>Depositional Environments</td>
<td>30</td>
</tr>
<tr>
<td>Structural Nature of Basin</td>
<td>30</td>
</tr>
<tr>
<td>Summary and Conclusions</td>
<td>31</td>
</tr>
<tr>
<td>Appendix: Previous Works</td>
<td>32</td>
</tr>
<tr>
<td>References</td>
<td>35</td>
</tr>
<tr>
<td>Index</td>
<td>39</td>
</tr>
</tbody>
</table>
ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Stratigraphic column of Fredericksburg strata within the East Texas basin</td>
<td>6</td>
</tr>
<tr>
<td>2.</td>
<td>The East Texas basin, showing the boundaries of the study area</td>
<td>6</td>
</tr>
<tr>
<td>3.</td>
<td>Index map of the study area, showing the county lines and names</td>
<td>7</td>
</tr>
<tr>
<td>4.</td>
<td>Physiographic index map of Fredericksburg outcrop regions throughout Texas</td>
<td>7</td>
</tr>
<tr>
<td>5.</td>
<td>Map of well and core localities, and lines of section</td>
<td>7</td>
</tr>
<tr>
<td>6.</td>
<td>Correlation chart for the Lower Cretaceous units</td>
<td>8</td>
</tr>
<tr>
<td>7.</td>
<td>Distribution of Lower Cretaceous shelf facies around the ancestral Gulf of Mexico</td>
<td>9</td>
</tr>
<tr>
<td>8.</td>
<td>A generalized north-south cross section of subsurface</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Fredericksburg rocks in the East Texas basin</td>
<td>9</td>
</tr>
<tr>
<td>9.</td>
<td>A generalized north-south cross section of Fredericksburg rocks</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>of the outcrop belt in southern Oklahoma and northeast Texas</td>
<td>9</td>
</tr>
<tr>
<td>10.</td>
<td>A generalized north-south cross section of Fredericksburg rocks</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>of the outcrop belt in north central Texas</td>
<td>9</td>
</tr>
<tr>
<td>11.</td>
<td>A generalized cross section of surface and subsurface</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Fredericksburg rocks in central Texas</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>North to south stratigraphic cross section A-A'</td>
<td>12</td>
</tr>
<tr>
<td>13.</td>
<td>North to south stratigraphic cross section B-B'</td>
<td>12</td>
</tr>
<tr>
<td>14.</td>
<td>East to west stratigraphic cross section C-C'</td>
<td>14</td>
</tr>
<tr>
<td>15.</td>
<td>East to west stratigraphic cross section D-D'</td>
<td>14</td>
</tr>
<tr>
<td>16.</td>
<td>East to west stratigraphic cross section E-E'</td>
<td>16</td>
</tr>
<tr>
<td>17.</td>
<td>Electric log signatures of the Fredericksburg Group</td>
<td>16</td>
</tr>
<tr>
<td>18.</td>
<td>Isopach of the Fredericksburg Group</td>
<td>18</td>
</tr>
<tr>
<td>19.</td>
<td>Electric log signatures of the Upper Antlers Formation</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(Paluxy equivalent) and the Paluxy Formation</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Isopach of the Paluxy Formation</td>
<td>20</td>
</tr>
<tr>
<td>21.</td>
<td>Isolith of the Paluxy Formation</td>
<td>21</td>
</tr>
<tr>
<td>22.</td>
<td>Electric log signatures of the Walnut Formation</td>
<td>22</td>
</tr>
<tr>
<td>23.</td>
<td>Isopach of the Walnut Formation</td>
<td>23</td>
</tr>
<tr>
<td>24.</td>
<td>Electric log signatures of the Comanche Peak Formation</td>
<td>24</td>
</tr>
<tr>
<td>25.</td>
<td>Isopach of the Comanche Peak Formation</td>
<td>24</td>
</tr>
<tr>
<td>27.</td>
<td>Isopach of the Edwards Formation</td>
<td>25</td>
</tr>
<tr>
<td>28.</td>
<td>Electric log signatures of the Goodland Formation</td>
<td>26</td>
</tr>
<tr>
<td>29.</td>
<td>Isopach of the Goodland Formation</td>
<td>26</td>
</tr>
<tr>
<td>30.</td>
<td>Paleogeologic map A</td>
<td>27</td>
</tr>
<tr>
<td>31.</td>
<td>Paleogeologic map B</td>
<td>27</td>
</tr>
<tr>
<td>32.</td>
<td>Paleogeologic map C</td>
<td>28</td>
</tr>
<tr>
<td>33.</td>
<td>Paleogeologic map D</td>
<td>28</td>
</tr>
<tr>
<td>34.</td>
<td>Paleogeologic map E</td>
<td>29</td>
</tr>
<tr>
<td>35.</td>
<td>Paleogeologic map F</td>
<td>29</td>
</tr>
<tr>
<td>36.</td>
<td>Paleogeologic map G</td>
<td>30</td>
</tr>
<tr>
<td>37.</td>
<td>Paleogeologic map H</td>
<td>30</td>
</tr>
<tr>
<td>38.</td>
<td>Isopach of the Kiamichi Formation</td>
<td>31</td>
</tr>
</tbody>
</table>
Stratigraphy of the Fredericksburg Group, East Texas Basin

L. Marlow Anderson

ABSTRACT

The lower Cretaceous Fredericksburg Group is a classic example of a time-transgressive unit. This major group consists, on outcrop in central Texas, of the Paluxy Sand, the Walnut Clay, the Comanche Peak Limestone, and the Edwards Limestone. In north Texas and in the East Texas basin, it is commonly accepted to be represented by the Paluxy Sand, Walnut Clay, and the Goodland Formation (Comanche Peak and Edwards equivalent). However, electric log analysis and mapping of Fredericksburg rocks on a regional scale in the basin show the Goodland to be differentiable.

Initial Fredericksburg sedimentation began with south-flowing Paluxy fluvial systems shed from the Oklahoman Ouachita-Arbuckle trend. Minor streams fed the basin from the west. This progradation developed a complex facies network of intertonguing strandline, fluvial, lagoonal-embayment, and deltaic deposits. The distal Paluxy interfingered with the time-equivalent basinal Walnut Clay. Gradual cessation of Paluxy clastic influx, accompanied by slow basin subsidence, allowed the slow northwestward encroachment of Walnut facies. Continued inundation across the northern basin brought marine conditions, and by the time of Edwards deposition, marine waters covered the greater part of the basin. Basinal depocenters existed during emplacement of Paluxy, Walnut, and Comanche Peak Formations. However, by the time of Edwards deposition, a stable shallow back-shelf lagoon had evolved. Fredericksburg deposition ended with Kiamichi clastic invasion and subsidence of the basin.

PURPOSE

The most widely exposed and perhaps the most thoroughly studied stratigraphic unit in the Comanchean outcrop belt in Texas is the Fredericksburg Group, which has been a focus of geological attention for more than a century. This rock group plunges into the subsurface beneath the Tertiary rocks of the East Texas basin, where, because it has not been widely productive, it is almost ignored. However, the history of this rock group is an important element in the evolution of the East Texas basin and the Comanchean shelf. Therefore, it is the purpose of this investigation to describe the stratigraphy of the Fredericksburg rocks of the East Texas basin (Fig. 1), and, on the basis of that description, to interpret the history and relationship of the rocks to the evolution of the basin.

LOCATION

The area of interest lies in northeastern Texas in the East Texas basin, which is bounded by the Arbuckle/Ouachita system, the Sabine Uplift, the Angelina-Caldwell Flexure, and the Central Texas Platform (Fig. 2). Figure 3 shows the 62 counties of the study area. These will be referred to later in the text.

The Fredericksburg outcrop belt comprises the physiographic regions of the Lampasas Cut Plain which merges northward into the Fort Worth Prairie and Western Cross Timbers to the Red River (Fig. 4). Southward, it merges into the Edwards Plateau. The Fredericksburg strata dip gently to the south-southeast and east into the subsurface along the northern and western margins of the basin.

METHODS

The principal methods used in this investigation include: (1) correlation and interpretation of electric well logs; (2) construction of regional stratigraphic cross

* A thesis submitted in partial fulfillment of the requirements for the M.S. degree in Geology, Baylor University, 1987.
sections; (3) construction of isopach and lithofacies maps on significant stratigraphic units; (4) analysis of conventional cores; (5) seismic interpretation (Fig. 5); (6) field reconnaissance in the outcrop belt of Fredericksburg rocks; and (7) an extensive review of previous works concerning the Fredericksburg, the Comanchean Series of the East Texas basin, and depositional models of shallow epeiric environments.

PREVIOUS WORKS
As in any study of an area of this magnitude, a major element is based upon existing literature. Therefore, an extensive review of the literature on Fredericksburg rocks of the East Texas basin, the Fredericksburg rocks of the marginal areas to the basin, basin history, and depositional environments was undertaken. A compilation of these previous works is presented as an Appendix.

ACKNOWLEDGMENTS
Sincere gratitude is expressed to O.T. Hayward, who

Core data in the form of descriptions and photographs are available in the original text at Baylor University.

Seismic control is shown on Figure 5, but individual seismic cross sections are only available in the original text.

Fig. 1. Stratigraphic column of Fredericksburg strata within the East Texas basin. The basin can be divided into three distinct stratigraphic areas. In the northern basin, the Fredericksburg is represented by the Upper Antlers Formation (Paluxy equivalent), the Walnut Formation, and the Goodland Formation. In the central basin, the Fredericksburg comprises the Paluxy Formation, the Walnut Formation, the Comanche Peak Formation, and the Edwards Formation. In the southern basin, the Fredericksburg is made up of the Walnut Formation and the Goodland Formation.

Fig. 2. The East Texas basin, showing the boundaries of the study area. The Arbuckle-Ouachita system serves as the northern boundary, the Sabine Uplift as the eastern boundary, the Angelina-Caldwell Flexure as the southern boundary, and the Central Texas Platform as the western boundary.
Fig. 3. Index map of the study area, showing the county lines and names for reference purposes. The northern, middle, and southern basins are indicated. These are characterized by differing Fredericksburg stratigraphy, a product of sediment supply, basin tectonics, and possible eustatic changes in sea level.

Fig. 4. Physiographic index map of Fredericksburg outcrop regions throughout Texas. The outcrop belt bordering the study area lies within the Lampasas Cut Plain, Fort Worth Prairie, and Western Cross Timbers. Fredericksburg strata dip gently to the east-southeast into the subsurface into the East Texas basin and extend westward to disappear beneath Miocene-Pliocene deposits of the Llano Estacado. Present distribution suggests that at one time they covered all of Texas.

supervised this study. His continuous guidance, encouragement, and sense of humor made the path easier. Deep appreciation also goes to Robert C. Grayson, Jr., who played more than the role of a second reader. His direction challenged my thoughts throughout this investigation. My thanks are also extended to the entire faculty of the department. These seasoned geologists have instilled in me a deeper appreciation and greater knowledge of geology.

I gratefully acknowledge those who provided material and financial support: Marshall Exploration Company (through the efforts of Jack Trice); Cecil E. Boykin, Shell Development Company; Diane Barnes, Geomap, Inc.; and the University of Texas Bureau of Economic Geology. Special thanks go to Lucille Brigham, Brian Lock, and Viola Shivers for editing this manuscript and Hoffman Hibbett for drafting the figures.

Thanks are also due to all my contemporaries within the graduate department. Sincere appreciation must be given to special friends, officemate David Lemons, roommates Susan Haycock and Carol Hoadley, and best friend, Roland Clubb.

I am forever indebted to my parents, Robert and Rose Anderson, and my family for their sustaining support, encouragement, and love throughout my life.

Fig. 5. Map of well and core localities, and lines of section that were principal elements in the investigation. Well coverage was selected to emphasize regional trends within the basin; numbering is on a per county basis. Particular effort was given to selecting those least affected by local structural elements. Interpretation of depositional environments was based principally on log signatures, since cores were limited in distribution and availability. However, those that were available were studied in some detail.
REGIONAL NATURE AND DISTRIBUTION
OF THE FREDERICKSBURG GROUP

The Fredericksburg Group and its equivalents within the Lower Cretaceous Comanchean Series extend across the North American continent. Changes in lithology, stratigraphic nomenclature, and character of the section create a complex facies network in the East Texas basin and surrounding areas. It is the purpose of this section to describe the nature and distribution of the Fredericksburg Group in the East Texas basin and those neighboring areas that may have important bearing on deposition within the basin (Figs. 6 and 7).

EAST TEXAS BASIN

The Fredericksburg Group is a clastic-carbonate "package" which thickens progressively from 100 feet in the north to 900 feet to the south-southeast (Fig. 8). It is composed largely of carbonates with basal Paluxy sand pinching out to the south, while the Walnut Formation thins northward. Comanche Peak sediments thicken to the southeast, while the overlying Edwards Formation maintains a uniform thickness of 25 feet for the greater part of the basinal area. The Goodland Formation in the northern margin varies in thickness from 25 to 60 feet. Along the southern margin, the southwest-northeast trending Stuart City Reef increases in thickness from 100 to 1000 feet, although not all of this is of Fredericksburg age. Overall, the Fredericksburg rocks decrease in terrigenous material upward in the section.

NORTHEAST TEXAS

Northwest and updip from basinal sediments is the bordering outcrop in the Fort Worth Prairie Province. The basal section consists of the Paluxy-equivalent Antlers Sand. The overlying Walnut Clay thickens from 4-7 feet near Cooke County to 30 feet in Tarrant County (Fig. 9) (Hendricks, 1967, p. 56-57). This thinly laminated shale, most often containing a Texigryphaea oyster bed, thins northward to 0.5 feet in southern Oklahoma (Sandlin, 1973, p. 55-56). Thickening from 26 to 116 feet along the same trend is the overlying Goodland Formation. The fine-grained, sparse biomicritic limestone decreases in marl and shale upward in the section (Staples, 1977, p. 17), rarely exceeding 10% terrigenous content (Sandlin, 1973, p. 31).

NORTH CENTRAL TEXAS

Southward, in the Lampasas Cut Plain physiographic province (Fig. 10), the uppermost Antlers grades into the Paluxy sands, silts, clays, and caliche (Corwin, 1982, p. 29). The basal Paluxy Formation reaches a maximum of 140 feet and thins southward to pinch out in the subsurface in Bell and McLennan Counties (Moore and Martin, 1966, p. 985). The Walnut Formation, consisting of clay, limestone, and shell aggregate, thickens from 60 to 180 feet to the south-southeast (Corwin, 1982, p. 32). The overlying Comanche Peak, consistent in lithology, thickens to the south from 60 to 125 feet (Corwin, 1982, p. 33). The Goodland grades into both the Comanche Peak nodular limestone and marl and the Edwards rudist-bearing limestone (Corwin, 1982, p. 33-34). The pure limestone and rudist mounds are unique to the Edwards Formation of the platform, though a facies equivalent to the Edwards can be recognized over almost all the Goodland outcrop belt (Lemons, 1987, p. 98). The Edwards, in outcrop, maintains a remarkably uniform thickness of 30-55 feet for most of the region (Corwin, 1982, p. 34; Walker, 1984, p. 58). In Bell County, however, on the Belton High, it thickens drastically in a lenticular trend to a maximum of 125 feet at Moffat Mound (Fig. 10), where Edwards rocks consist of pelletal-oolitic limestone (Moore, 1964, p. 21; Kerr, 1977, p. 217; and Amsbury, Bay, and Lozo, 1984,

Fig. 6. Correlation chart for the Lower Cretaceous units, including Texas, Mexico, and the southern margin of the Western Interior of the United States.
STRATIGRAPHY OF THE FREDERICKSBURG GROUP

is absent, the Duck Creek disconformably overlies the Edwards (Keyes, 1976, p. 17). This surface is also a nondepositional unconformity (Corwin, 1982, p. 39).

CENTRAL TEXAS

The Edwards Group exists to the west-southwest in the Edwards Plateau region (Rose, 1972, p. 3). In the subsurface San Marcos Platform subprovince, the limestone and dolomite sequence is divided into two formations. The lower Kainer Formation (400') is correlative with Fredericksburg rock, and the upper Person Formation (200') is equivalent to the Washita unit (Fig. 11) (Rose, 1972, p. 12, 18, 19). The conformable Group boundary is placed at a consistent argillaceous, wispy biomicrite termed the Regional Dense Member (a Kiamichi equivalent) (Rose, 1972, p. 19, 20). Thickening to the south, the Kainer and Person

OKLAHOMA

I

p. 18). The upper contact with the Washita Group is unconformable within the Lampasas Cut Plain (Corwin, 1982, p. 38). Where the Kiamichi is present, from Tarrant County to McLennan County, the contact is a nondepositional unconformity (Nelson, 1959, p. 30; Lambert, 1979, p. 12). Southward, where the Kiamichi

Fig. 8. A generalized north-south cross section of subsurface Fredericksburg rocks in the East Texas basin. Paluxy Sand is shown to pinch out to the south, while the Walnut thins dramatically to the north. Comanche Peak also thins to the north, however the Edwards maintains a uniform thickness throughout the central basin. Comanche Peak and Edwards thin slightly to the north and thicken to the south, merging to form the Goodland. The north-south trending outcrop belt marginal to the basin shares most of these trends. Where the Edwards and Comanche Peak merge together in the southern outcrop region, the massive limestone has been termed the Edwards Group (Rose, 1972, p. 49).

Fig. 9. A generalized north-south cross section of Fredericksburg rocks of the outcrop belt in southern Oklahoma and northeast Texas. The Antlers Formation is shown to thin southward to Tarrant County. Further south, it grades laterally into the Paluxy and Twin Mountains (Travis Peak) sands. Similar subsurface trends exist in the northern portion of the East Texas basin.

Fig. 10. A generalized north-south cross section of Fredericksburg rocks of the outcrop belt in north central Texas, Lampasas Cut Plain Province. Paluxy Sand thins southward, pinch out in McLennan and Bell Counties (in subsurface). Walnut and Comanche Peak Formations thin to the north, while Edwards maintains approximately the same thickness throughout the Cut Plain. The Edwards thickens dramatically to the south in Bell County. South of this point, the "platform" subsided during Fredericksburg deposition. Northward, it was stable throughout this interval.
formations grade into the rudist bank facies of the Devils River Formation that encircles the Maverick basin. Along this trend, maximum thickness is approximately 800 feet (Fig. 11; Rose, 1972, p. 64). The Edwards thins slightly to 600 feet in the Maverick basin (Rose, 1972, p. 64). Evaporites are commonly associated with the limestone and dolomite in the basin. Here the Group is separated, with the lower McKnight and West Nueces Formations correlative to Fredericksburg rocks, and the upper McKnight correlatives to lower Washita rocks (Fig. 11; Rose, 1972, p. 65, 74). Northwestward, Fredericksburg rocks thin out of the Maverick basin and Devils River trend onto the Central Texas Platform subprovince. The lower Fort Terrett (Fredericksburg equivalent) thins from 300 to 160 feet (Rose, 1972, p. 32), and the upper Segovia (uppermost Fredericksburg-Washita equivalent) thins from 360 to 230 feet (Rose, 1972, p. 35). Lithologically, the two formations consist of limestones, dolomites, and evaporites. A persistent gypsum zone, the Kirschburg Evaporite, serves as a boundary between the two, where it is present (Rose, 1972, p. 34).

The Fredericksburg-Trinity contact is probably disconformable throughout the area (Rose, 1972, p. 30). The most convincing evidence for this belief is the presence of oyster marl of the basal Edwards within cracks of the uppermost Glen Rose Formation. This basal contact is with the Glen Rose, except in minor areas adjacent to the Llano Uplift where the Glen Rose grades into the Hensel Sand. The upper Edwards-Del Rio and Edwards-Buda contact are also disconformable (Rose, 1972, p. 45, 46).

WEST CENTRAL TEXAS

Northward from the Edwards Plateau region, the Fredericksburg thins slightly to the Callahan Divide physiographic province, where the more marine components of the Fredericksburg rest on the Antlers Formation, and the classic Walnut and Comanche Peak of the Lampasas Cut Plain cannot be differentiated (Moore, 1969, p. 9). Therefore the 80-foot section southward of Abilene in the Callahan Divide region shares characteristics of both formations: fossiliferous, interstratified marl and nodular limestone (Moore, 1969, p. 9). At that same locality the rudist-bearing Edwards consists of only one true rudist biostrome, the Skelly-Hobbs Rudist Complex, which reaches a maximum thickness of 15 feet and covers at least six square miles (E. Marcantel, 1969, p. 19-23). The carbonate components merge to the west to form the “Callahan Complex,” a package of oolitic, pelletal grainstones, packstones, and fossiliferous wackestones. This asymmetrical lenticular mound coincides with the crest of the Concho Arch (Boutte, 1969, p. 40-43). The upper Fredericksburg section is thought to have been removed by erosion (Fig. 6), however final Fredericksburg history remains uncertain (Moore, 1969, p. 11; E. Marcantel, 1969, p. 34).

WEST TEXAS

Westward, into the physiographic area of the Llano Uplift, Fredericksburg rocks thicken from 90 to 140 feet and are represented by thin Walnut, thick Comanche Peak, and thin Edwards units (Corwin, 1982, p. 52). Rudist mounds are again representative of the Edwards section. Disconformably underlying this group is the Antlers of the Trinity Group (Corwin, 1982, p. 17). The overlying contact is unconformable with a caliche horizon of the parent Miocene-Pliocene Ogallala Formation (Corwin, 1982, p. 20).

Further westward in the Stockton Plateau-Big Bend region, the Fredericksburg facies resemble tidal flat, rudist mound, and near-shore shelf facies of the Edwards Plateau (Scott and Kidson, 1977, p. 173).

MEXICO

Fredericksburg rocks in Mexico have been correlated with Fredericksburg and Early Washita equivalents in Texas (Fig. 6). The Aurora Limestone of the Rio Conchos area (Stephenson, 1942, p. 448) and the El Abra, Tamaulipas, and Tamambras Formations of the Golden Lake-Poza Rica trend (Coogan et al., 1972, p. 1445) possess lithologic and faunal characteristics similar to those of the Stuart City Reef trend.

NORTH AMERICAN INTERIOR

Fredericksburg strata preserve their terminology within the interior of the continent in southwest Oklahoma, southwest Arkansas, and at the head of the Mississippi Embayment, in Missouri, Kentucky, and Illinois (Stephenson, 1942, p. 448). In the southern margin of the Western Interior (Kansas and Oklahoma), Fredericksburg equivalents are the Cheyenne Sandstone and the lowermost Kiowa Shale (Fig. 6; Scott, 1970, p. 1235).
The stratigraphy of the Fredericksburg Group within the East Texas basin has traditionally been considered to consist of the Paluxy Sandstone, Walnut Clay, and Goodland Formations (from the base upwards). However, basin-wide electric log correlations reveal that this nomenclature needs some modification. The correlation of the Goodland Formation with areas to the south has long been debated; in this investigation, the Goodland is considered to be the time-equivalent of the Comanche Peak and Edwards Formations. Primary evidence for this is the similarity in lithology between the Goodland sequence and the Comanche Peak/Edwards overall sequence. Both exhibit similar outcrop lithologies, similar electric log signatures, a decrease in clastics, and an increase in carbonate content upward. The Edwards equivalent is more than 90 percent calcium carbonate. The Upper Fredericksburg section also exhibits gradual and consistent thinning to the north, thickening to the south, and thickening toward the Sabine Uplift (Figs. 12, 13, 14, 15, and 16). Therefore, for the remainder of this discussion, the term Goodland will be used only where the Edwards and Comanche Peak cannot be differentiated (Fig. 1). The Paluxy Formation merges with the Antlers Sands north of the Glen Rose pinchout, where the uppermost section of the Antlers Sands is the lateral equivalent of the Paluxy (Fig. 1). The basis for this division of the Antlers will be discussed later in the text.

FREDERICKSBURG GROUP

Lithology

Although the Fredericksburg strata vary within the East Texas basin, the group is always recognized on electric logs by a significant decrease in resistivity upward at the lower boundary and an upward decrease in spontaneous potential (SP) at the upper boundary. The lowermost contact is drawn at the top of the Glen Rose Limestone. The upper contact (Kiamichi-Goodland and Kiamichi-Edwards) is considered to be the resistant limestone directly below a thin shale (Fig. 17). The section consists predominantly of clastics in the north and carbonates in the south.

Contact Relationships

Gradational contacts are present between the Antlers and Paluxy Formations in the northern basin and the Glen Rose and Walnut Formations in the southern basin. Unconformable upper contacts may exist between the Edwards and Kiamichi Formations and the Goodland and Kiamichi Formations. The apparent nondepositional nature of the upper contact is discussed later in the text.

Distribution and Thickness

The Fredericksburg isopach map illustrates a general south to southeast thickening trend (Fig. 18). Most anomalous thicknesses are associated with known local structural features. Thickening in the northeastern portion, Area A, coincides with the Cass Syncline. Central Basin thickening, Area B, lies within the Salt Province. Prominent thick sections in Areas C and D correlate with the Mexia-Taco fault system. More closely spaced contour intervals in Area E, reflecting a greatly increased thickening rate, are south of the Angelina-Caldwell Flexure, the Cretaceous shelf margin. This is accompanied by the increase of carbonates in the Stuart City Reef trend. The north-central basin, Area F, lacks local structural features. Thickening and related sand increase is attributed to the proximity of clastic sources. The unusual thinning, encircled by a thickening trend, on the Sabine Uplift (Area G) is due to later erosional truncation.

PALUXY FORMATION

Lithology

The lowermost Paluxy Sand, in outcrop, is medium to very fine sand, coarse silt, and clay (Owen, 1979, p. 12-13; Corwin, 1982, p. 29-31). On electric logs it is recognized as a sand-shale package between two limestone units over most of the basin (Fig. 19). Due to the northward merger into the Antlers and southward pinchout of the Paluxy, the contacts vary in the subsurface.

In the northern basin, beyond the Glen Rose pinchout (Fig. 1), the uppermost Antlers (Paluxy equivalent) is distinguished from the lower Antlers section by an abrupt, traceable change in electric log signature. The upper section is characterized by stacked sand bodies, whereas the lower section is shale-dominated with intermittent sand stringers, displaying very little response on either spontaneous potential or resistivity (Fig. 19). Apparently, this reflects a significant change in depositional history. It seems a logical division, in that the upper Antlers section is correlative with similar stacked sands of the laterally adjacent Paluxy Formation. The thicker, upper Antlers section (Paluxy equivalent) represents a prolonged period of fluvial-delta deposition during a regressive and transgressive episode (for more detailed evidence, refer to summary figure caption, Fig. 34). Although the depositional contact is within the stacked sand section rather than at the base, for purposes of mapping, and because of accepted nomenclature, the lower boundary is shown at the base of the stacked sands at a small, persistent resistivity feature in the form of a groove or a notch. The upper contact is placed between the uppermost Paluxy Sand and the thin Walnut Limestone or Shale (Fig. 19).

In the southern basin, where the Glen Rose is present (Fig. 1), the base of the Paluxy is indicated by high resistivity at the top of the Glen Rose Limestone. The upper contact is placed at the base of the Middle Walnut member for consistency, because uppermost Paluxy lithology varies from thin shales to sand stringers to
blocky sands. The contact is drawn where the ragged signature of uppermost Paluxy terminates upwards against a high resistive signature, characteristic of the Walnut Limestone middle member (Fig. 19).

Contact Relationships

In surface exposures, the basal contact with the Glen Rose Limestone is generally conformable and may be abrupt, gradational, or interfingering (Owen, 1979, p. 9). The Paluxy-Walnut contact is generally conformable (Flatt, 1975, p. 12). Localized areas with moderately dipping Paluxy beds overlain by horizontal Walnut Shale beds have been interpreted as unconformable (Owen, 1979, p. 12). This angular relationship of beds was believed to represent a gentle onlapping of marine facies (Walnut sediments) onto periodically exposed and cemented Paluxy strandline deposits (Moore and Martin, 1966, p. 982-985). I offer a different interpretation of the localized phenomena, that they reflect a slow and gentle migration of basin facies (Walnut Shale) over nearshore facies (Paluxy Sand) with no hiatus period, thus no unconformity. In the subsurface, the gradational nature of the log response reflects the generally conformable upper and lower contacts (Fig. 19).

Distribution and Thickness

The basal Paluxy Formation is present only in the northern portion of the basin (Fig. 20). The relatively thin wedge of sandstone and shale thins uniformly to the south, apparently a product of distance from source to the north (Figs. 12 and 13). The zero contour represents the sand pinchout and the final line of facies intergradation with the basinal equivalent Walnut Clay facies (Figs. 12, 13, and 20).

Regional thickening is to the east. Local accumulations occur along the margins, and in the center region of the basin. The protruding lobes of Areas A, B, and C suggest sediment input points from the north, west, and northwest. Branching from the eastern border in Area D is an east-west trend coinciding with the Casa Syncline. The thickness of 450 feet is a product of thick shales rather than the stacked sand sequences of the lobes (Fig. 14). Maximum thicknesses of 600-650 feet are associated with structural features within the central basin area. Correlations between the elongated thick section in Area E and the northern Menya-Talco fault system are exact, suggesting contemporaneous fault activity with deposition. The depocenter in Area F lies within the Salt Province, indicating salt activity during Paluxy deposition.

A sand isolith map illustrates the nature of deposition (Fig. 21). Eight input points are delineated in Areas A and B, as indicated by arrows. Those fluvial systems of Area B coincide with paleodrainageways and are in accord with field evidence (Brothers, 1984, p. 21-23, Plate II). The merger of these systems with those of Area A and the predominant north-south trend of the conduits suggest that the major source area was to the north. Widespread dispersal in Area C conforms to the configuration of a lobate delta complex. Drastic variations in sand thickness of Area C reflect salt movement. Thinning of the Paluxy over the Van, Hawkins, and Gainesville anticlines (shown by pattern in Area C) is due primarily to nondeposition during anticline growth (Smi, 1981b, p. 53). Two anomalous elongate thicks in Area D may be offshore bars (Fig. 15), though orientation is impossible to determine due to the paucity of well control. The overall north-south geometry of sand distribution and lack of east-west coalescing sand bodies indicate a constructive fluvial-deltaic complex with very low tidal action and wave energy.

WALNUT FORMATION

Lithology

The basal unit of the Fredericksburg in the southern study area is the Walnut Clay. The five-member formation consists of a basal limestone, thick lower clay, two middle limestones, and thick upper marl units.
FIG. 14. East to west stratigraphic cross section C-C' (see Fig. 5).

WEST

D
J-2 J-3

EAST

D'

He-3 Sm-12 Ru-2 Pa-4

Moore and Martin, 1966, p. 984). Both limestone and clay intervals have characteristic Texigryphea and Exogyra oyster banks (1975, p. 16). The base of the Walnut contains only small amounts of reworked Paluxy quartz sand (Flatt, 1975, p. 12). The overlying Walnut is considered conformable and on electric logs as two limestone units separated by thick marl-shale sections (Fig. 22). Where Paluxy Sand is absent (Fig. 8), the lower contact is placed at the base of the middle limestone where Paluxy Sand is present (Fig. 8). The upper contact separates the lower, shale-dominated Walnut from the upper, carbonate-dominated Comanche Peak. The top of the Walnut is marked at the point of increase in both spontaneous potential (SP) and resistivity reflecting a change from shale to limestone (Fig. 22).

Contact Relationships

The overlying Walnut is considered conformable and unconformable with the basal Paluxy (Flatt, 1975, p. 12; Owens, 1979, p. 9, 12). On outcrop, the angular relationship between the Paluxy and Walnut has been cited as the basis for recognition of the unconformity. However, I believe deposition was continuous with a migration of basinal facies over strandline deposits. An interfingering relationship also exists between the Walnut and the Paluxy (Figs. 12 and 13). A conformable and gradational contact separates the Walnut and overlying Comanche Peak Formations (Flatt, 1975, p. 12; Keyes, 1977, p. 29). In the subsurface, gradational electric log responses suggest conformable upper and lower contacts (Fig. 24).

Thickness and Distribution

The Walnut Formation occurs throughout the basin (Fig. 29). Regional thickness ranges from less than 50 feet in the north to 550 feet in the south. The five members, only the middle limestone is laterally extensive throughout the basin, thickening uniformly to the south (Figs. 32, 13, 14, 15, and 16). The maximum thickness in Area A coincides with the southernmost region of the Salt Province and the southern perimeter of the Mexia-Tuleo system. Thickening takes place principally in the lower clay unit (Figs. 12 and 16), indicating both salt and fault movement during Early Walnut deposition. Accumulations on the Sabine Uplift, Area B, are attributed to thickening of the middle limestone unit (Fig. 15), possibly a facies complex with a structural high or a more rapidly subsiding area. Broad thinning in Area C follows the trend of the Stuart City Reef, suggesting that it was a paleotopographic high. The rapid thickening of the Walnut south of the 50-foot contour does not indicate a shelf slope, but the gradational interfacies relationship with the Paluxy Sand. The basal Walnut Members were deposited contemporaneously with the Paluxy Sands.

COMANCHE PEAK FORMATION

Lithology

Comanche Peak surface exposures consist of interstratified nodular limestone and marl (Keyes, 1977, p. 19). The overall upward sequence represents a transition...
from slightly brackish and normal marine conditions to marine conditions with little clay input to the upper Fredericksburg section (Keyes, 1977, p. 48).

The remarkably uniform lithological character can be traced into the subsurface, allowing easy identification of the Comanche Peak on electric logs (Fig. 24). The base is at the point of upward increase in both spontaneous potential (SP) and resistivity marking the shale-to-limestone transition. The upper contact is the point of rapid upward decrease of resistivity representing the boundary between the Comanche Peak and Edwards Limestones.

Contact Relationships
Both upper and lower contacts in both outcrop (Keyes, 1977, p. 52) and subsurface are conformable.

Thickness and Distribution
The Comanche Peak Formation is a distinct unit characterizing the northern clastic-dominated basin and the southern limestone-dominated basin. Gradational log responses with the Glen Rose suggest conformable or disconformable lower contacts. Abrupt change in signatures between Edwards and Kiamichi and Goodland suggests a possible unconformable contact or abrupt change in depositional environments. The contacts between the Fredericksburg formations apparently reflect gradational and conformable contacts.

EDWARDS FORMATION

Lithology
The Edwards Formation in outcrop is a rudist-bearing carbonate unit which lacks terrigenous material (Corwin, 1982, p. 49).

On electric logs, it is seen as a persistent, 20-25-foot thick limestone directly below a thin shale unit (Fig. 26). The marked upward decrease in resistivity between the Edwards and Comanche Peak Limestone is considered to be the base of the Edwards. The upper contact is at the top of the strong response in spontaneous potential or resistivity.

Contact Relationships
The Edwards conformably overlies the Comanche Peak on the surface (Corwin, 1982, p. 19, 25) and in the subsurface. Evidence for an unconformity also exists between the Edwards and Duck Creek Formations (Corwin, 1982, p. 39) and between the Edwards and Del Rio in West Texas (Brian Lock, April 7, 1987—personal communication). The unconformities discussed here are nondepositional, characterized by case hardening, oxidation, borings, and pits in the upper surface of the Edwards Formation. On the basis of personal observations, I believe that this widespread phenomenon represents a submarine nondepositional surface. It is possible that this unconformable relationship persists into the subsurface, where similar thicknesses and character mark the formations.

Thickness and Distribution
The most striking feature of the Edwards isopach is the constant thickness of 20-25 feet throughout the greater part of the basin (Fig. 27). Marginal accumulations of 50-100 feet border the area on the east and south. For the most part, the massive limestone thickness are related to structural features and areas of greater subsidence. In the northeast, Area A, limestone gradually thickens to undifferentiated Goodland. The Sabine Uplift, Area B, lies directly south of the Cass Syncline. The inconspicuous thick at B implies thickening towards the Edwards-Goodland intercalation zone. The same holds true to the southwest in Area C. Region D, with a thickness of 50 feet, may be related to contemporaneous faulting of the Mena system as in Areas A on the Walnut and Goodland isopach maps (Figs. 23 and 24); or may be a possible carbonate buildup similar to that of reef mounds in nearby outcrop exposures. The Moffat Lintel, Area E, attains a maximum thickness of 125 feet, apparently a reef buildup over the Del Rio in West Texas (Kerr, 1977, p. 217). goodness FORMATION

Lithology
The Goodland-Walnut contact varies from sharp to gradational (Staples, 1977, p. 19). Evidence for an unconformity between the Goodland and the Kiamichi is similar to that described for the Edwards-Kiamichi unconformity. Reports of Kiamichi-filled borings in the top of the Goodland (Laal, 1973, p. 108-120; Localities...
Fig. 18. Isopach of the Fredericksburg Group. Thickening is to the south-southeast. Anomalous thicknesses result from local structural activity.
STRATIGRAPHY OF THE FREDERICKSBURG GROUP

WESTERN BASIN
NO. 3

SP
RES

COMANCHE PEAK

GOODLAND

PALUXY

KIAMICHI

GLEN ROSE

JOHNSON CO.

T3, G1, Ch1, M1, and W1) were confirmed. It is believed that the upper surface can be correlated to that of upper Edwards, suggesting a widespread submarine nondepositional surface.

In the subsurface, the lower contacts of the formation are gradational. Upper contacts are likely to be unconformable, as indicated by electric log character and the similarity in outcrop and subsurface thicknesses. However, the nature of the upper contact is not certain.

 Thickness and Distribution

Two conspicuous east-west bands along the north and south margins of the study area contain most of the Goodland rocks encountered (Fig. 29). The northern strip, strip A, averaging 30 feet, also contains anomalous 60-80-foot thick in the northwest corner. Lobes similar to those of A' and A" probably extend all along the feather edge, representing the intertonguing zone between Goodland and time-equivalent formations. Paucity of well control limits delineation of those lobes. The gradational zone of strip B, represented by the zero contour line, coincides with the Angelina-Caldwell Flexure. A maximum thickness of 1060 feet occurs in the Humble Ogletree #1 well, and correlates with the axis of the Stuart City Reef trend (Fig. 29); axis orientation was delineated by seismic control. Area B', associated with the Sabine Uplift, shows thinning to the east, apparently due to post-Comanchean erosional truncation (Halbouty and Halbouty, 1982, p. 1064; Scott, 1970, p. 525; Granata, 1963, p. 75). The complexity of stratigraphy on the Sabine Uplift within the vicinity of B' increases with the gradational change into the massive Goodland Formation (Fig. 13).

DEPOSITIONAL HISTORY OF FREDERICKSBURG GROUP, EAST TEXAS BASIN

INTRODUCTION

Discussion in this section first highlights the depositional history of the pre-Fredericksburg in the East Texas basin. Attention then shifts to the regional depositional history of the Comanchean shelf, and then to the depositional history of the Fredericksburg in the East Texas basin. Although the histories of the shelf and basin were contemporaneous, they are treated individually due to lack of clear time-lines. Discussion begins with the initial clastics of the Paluxy Formation and the advent of Walnut Formation carbonates. The history then traces the continual carbonate deposition during Comanche Peak time through the culmination of carbonate deposition during Edwards time. The end of Fredericksburg time with Kiamichi deposition is also discussed. A summary of Fredericksburg history is illustrated in a series of sequential facies distribution maps within the East Texas basin (Figs. 30 through 37).

Identical facies geometry may result from a combination of processes: sedimentation, eustacy, and subsidence. Because of their interdependence, it is frequently difficult to divorce one from the others as a primary cause.

The East Texas basin is, by definition, a young continental margin shelf, its origin due to the regional rifting that opened the Gulf of Mexico (Wood and Walper, 1974, p. 40-41; Van Siclen, 1983, p. 239). Shelf subsidence, said to be a result of lithospheric cooling away from the spreading axis, is the predominant tectonic activity of young continental margins (Bott, 1971, p. 319-327). The cooling process persists long after initial separation and declines exponentially with time (Bott, 1971, p. 319-327). Thus, the transgressive nature of the Fredericksburg may be explained by subsidence alone, and eustatic sea level changes may be of minor importance, except for the possible sea level rise at the beginning of Edwards time. Sediment loading was only a minor contributor to subsidence.
Fig. 20. Isopach of the Paluxy Formation. The southern termination of the clastic unit is near the center of the basin (Figs. 7 and 8). Thickened strata in Areas A, B, and C suggest clastics entered the basin from the north and northwest. The band of closely spaced parallel contours near the pinchout represents a gradational zone with the time-equivalent Walnut basinal facies and has no major structural significance. The zero contour marks the limit of sand deposition in the Paluxy/Walnut facies complex. Walnut Clay was deposited to the south while Paluxy Sand was deposited to the north.
Fig. 21. Isolith of the Paluxy Formation. Predominant north-south sand geometry reflects a constructive, river-dominated fluvial-deltaic system. Input points are indicated by the arrows. Note particularly the salt structures near letter C (shown as closed circles), interpreted as positive features, which affected Paluxy deposition. Ellipses near letter D are interpreted as offshore bars.
Fig. 22. Electric log signatures of the Walnut Formation. In the southern basin, all five members are represented: the Bull Creek (basal limestone member), Bee Cave, Cedar Park, and two upper marls. The limestone units reflect significant thinning to the north, apparently a product of sedimentation rate and bathymetry.

PRE-FREDERICKSBURG
The final phase of Glen Rose depositional history is one of marine regression. Deposition was controlled by increased subsidence accompanied by fault activity along the Balcones and Mexia-Talco zones (Shields, 1984, p. 63-64). Thick clastic sequences (termed the Antlers Formation) in the northern portion of the basin and thick accumulation of argillaceous limestone in the central portion of the basin are considered evidence of the Trinity regression (Shields, 1984, p. 63). I believe this lateral relationship actually reflects a southward progradation of clastics. The clastic input inhibits the growth of the shelf margin carbonate reefs (Shields, 1984, p. 63). Clastic deposition persisted until Fredericksburg time, when sediments conformably graded into Paluxy equivalent (Antlers) sands in the north, Paluxy Sands in the central portion, and Walnut Clays in the southern portion of the basin (Shields, 1984, p. 64).

REGIONAL HISTORY
Deposition of the Fredericksburg Group on the relatively stable Texas Craton was in response to a northwestward transgression of the Comanchean sea. Following the late Trinity cycle of progradation, the Fredericksburg sea transgressed across Glen Rose tidal flats and other marginal marine deposits, which were slightly eroded (Rose, 1972, p. 66). A gradational boundary is more representative of Glen Rose-Fredericksburg transition in the slightly deeper or more rapidly subsiding areas of the Comanche Shelf (Maverick basin) (Rose, 1972, p. 66) and the East Texas basin. Shelf edge bank accumulation continued through the transition period (Rose, 1972, p. 66). Open marine conditions characterized the ancestral Gulf of Mexico throughout Fredericksburg time (Rose, 1972, p. 66).

During the initial phase, the greater part of the shelf was blanketed by shallow open marine conditions, of low wave and current energy. Isolated areas proximal to positive features received sands and silts (Rose, 1972, p. 66). Upon stabilization, the environments shifted to shallow-water shelf deposition protected by Stuart City carbonate reefs. A few areas experienced conditions conducive to dolomite deposition as early as this stage (Rose, 1972, p. 66).

Regional shoaling, accompanied by tectonic changes, then controlled deposition. Tidal flats and restricted shallow marine deposits dominated the Platform axis (Rose, 1972, p. 66). To the southwest, evaporitic, euxinic conditions existed in the restricted Maverick basin (Rose, 1972, p. 66). Continued shoaling allowed tidal flats to expand across the vast Comanche Shelf and evolve into highly evaporitic, sabkha tidal flats (Rose, 1972, p. 66-70). Evaporitic conditions culminated in extensive deposition of the Kirschberg Evaporite in the Central Platform region (Rose, 1972, p. 70). Open shallow marine conditions with low wave and current energy then returned to the vast platform shelf. Rudist banks and sand bodies existed on local highs. Euxinic conditions persisted in the Maverick basin, with accumulation of dark lime mud (Rose, 1972, p. 70). Increased subsidence on the southeast end of the San Marcos Platform was accommodated by increased detrital accumulation from the partially exposed Stuart City reefs (Rose, 1972, p. 70). A brief period of nondeposition allowed exposure, as well as alteration, on the San Marcos Platform axis and northeast flank (Rose, 1972, p. 70). A return to shallow open-shelf marine conditions on the vast, flat platform marked the close of the Fredericksburg and the beginning of the Washita deposition (Rose, 1972, p. 70).

FREDERICKSBURG GROUP
Depositional Environments
Paluxy deposition was initiated in the northern portion of the basin as a prograding fluvial deltaic complex (Fig. 36). The northern portion of the East Texas basin had no evidence of thick stacked sand sequences and irregular electric log patterns, which would have been indicative of braided stream deposits (Cant, 1982, p. 120, 131), suggesting that Paluxy deposition extended laterally northward. This evidence, coupled with the northern Paluxy thickening, implies a northern provenance in the Arbuckle-Ouachita systems (Atlee, 1962, p. 18). Other source regimes include Pennsylvanian and Paleozoic strata from central Texas (Atlee, 1962, p. 18).

The Paluxy complex rapidly invaded the basin as a laterally migrating, constructive fluvial-deltaic system. Fluvial-deltaic interpretation is supported by existence of abandoned channel fill, point bar, and interdistrib-
Fig. 23. Isopach of the Walnut Formation. Major Walnut deposition occurred in the southern basin contemporaneous with the Paluxy deposition to the north. The tightly contoured band near the basin center represents the gradational zone with the Paluxy Formation. The Walnut of the northern basin consists of less than 50 feet of limestones and clays, resting conformably upon a southward thinning Paluxy Formation. Thick Walnut accumulation in Area A coincides with the southernmost extent of the Salt Province, thus implying salt activity during early Fredericksburg deposition. Walnut thickness in Area B, the Sabine Uplift area, is due to one of two causes, both related to subsidence: (1) detritus accumulation; or (2) reefal accumulation because sedimentation rate matched the subsidence rate. The thinning in Area C, south of the Angelina-Caldwell Flexure, is the likely site of Glen Rose reef development, and indicates that Walnut deposits were draped over a paleotopographic high. The stacked contours at the northern limit are an artifact of the interpretation. South of the 50-foot contour there are no sands in the Walnut-Paluxy interval. North of this line, sands are increasingly abundant, and the section is called Paluxy.
utary bay subfacies in cores. Evidence of point bar facies, as seen in the McCrary #1 core, indicates laterally migrating systems, indicating the possibility of point bar development extending well into the basin. Predominant north-south trending sand distribution is attributed to river-dominated delta progradation across a shallow marine shelf with low wave and current energy.

During maximum progradation (Fig. 31), dominant input was from the north; however, minor tributaries, primarily from the central Texas region, fed the western margin of the basin, as reflected by thin lobed sand accumulations (Fig. 21).

Seaward advancing delta systems and continued terrigenous input during Early and Middle Paluxy deposition gradually changed deposition of Glen Rose argillaceous lime mud to accumulation of Walnut clays and marls (Fig. 32). These basal Walnut units (the Bull Creek Member and the Bee Cave Member), deposited contemporaneously in the southern portion of the basin, probably represent nearshore, brackish conditions, marginal to the Paluxy fluvial systems.

Discharge of upper Paluxy sediments into the basin diminished, to mark the beginning of Fredericksburg transgression. Slow subsidence, accompanied by the decrease of clastics, allowed gentle encroachment of the sea. Initial Fredericksburg transgression is delineated on Figure 32 (Owen, 1979, p. 22). This subtidal zone of fluvial and marine intercalation is represented in outcrop by thin fossiliferous sand beds separated by thicker clay units with abundant oysters and serpulid worms (Owen, 1979, p. 29).

While Bee Cave Member deposition was occurring near the fluvial/marine transition zone, the middle limestone Cedar Park and Keyes Valley Members were being deposited in the "elastic-free" waters of the southeast basin.

The Fredericksburg sea continued to transgress, in response to overall basin subsidence, resulting in migration of facies (Fig. 33). In the southeast portion of the basin, deposition of the Walnut upper unnamed marls was initiated. The upper marls reflect relatively deeper, normal marine conditions (Flatt, 1976, p. 35; Jones, 1966, p. 179).

Northwestward migration of facies persisted (Fig. 34), due to continual subsidence and decline in clastic influx. Paluxy elastic deposition still existed in the northern marginal region with poorly developed limestones deposited in the adjacent basinward area (Figs. 12 and 13). The Cedar Park and Keyes Valley Members were deposited in the central portion of the basin in areas with only an occasional influx of terrigenous material, and are characterized by marked thinning to the north. Thinner accumulations may be attributed to a site of minor subsidence nearer to the basin margin. In the southern area, the upper marls were being laid down.

Contemporaneous with the deposition of the northern basin clays near the shoreline was the deposition of the Comanche Peak Formation in the southeast.

Fig. 24. Electric log signatures of the Comanche Peak Formation. The log response indicates predominant limestone lithology with thin interbedded shales. Both upper and lower contacts appear conformable. Note the slight northeastward thinning of limestone, a product of sedimentation and bathymetry.

Fig. 25. Isopach of the Comanche Peak Formation. Gentle regional thickening is to the south. The hachured line is the line of gradation into the Goodland Formation. Beyond the hachured line, lower Goodland was deposited contemporaneously with Comanche Peak.
Eventually, deposition of the Comanche Peak sediments occurred throughout the southern part of the basin, with the lower Goodland (Comanche Peak equivalent) along the extreme southern margin (Fig. 35). The marine upper marls never reached the northern portion of the basin, where *Texigryphea* beds characterize the Walnut outcrop as far north as Grayson County (Sandlin, 1973, p. 55-56).

Late in Fredericksburg history, expansion of the Fredericksburg sea resulted in more normal marine waters throughout the basin (Fig. 36). Rudist migration is likely to have occurred along the shelf edge in shallower, more agitated waters. The gregarious nature of the rudists implies early formation of banks and mounds.

Clear, shallow marine waters covered the entire basin, as indicated on outcrop by diverse fauna and lack of clastic material (Corwin, 1982, p. 49-50). Normal saline conditions prevailed; however, occasional shoaling restricted circulation, inducing conditions to become hypersaline. Evidence is seen in the vuggy dolomite and subtidal anhydrite occurrence in the basal Shell Johnson #1 core. In the northern basin, where the lower Goodland (Comanche Peak equivalent) was deposited, waters may have been somewhat muddy, as indicated by foraminiferal content, an abundance of mud-burrowing clams, and a high clay-limestone ratio (Beddoes, 1959, p. 68).

Deposition of the Goodland in both the northern and southern marginal areas occurred simultaneously.

Edwards deposition marks the maximum extent of Fredericksburg seas. The presence of uniform Edwards thickness throughout the greater part of the basin, the similarity in thickness of both outcrop and subsurface, a consistent signature on electric logs, and the widespread extent of Edwards Limestone may indicate a single brief sea level rise, a pulse of subsidence, or a combination of both occurrences (Fig. 37).

With transgression, the shoreline retreated for great distances, as indicated by the absence of terrigenous sediments. Clear, normal marine to hypersaline waters existed as early as initial Edwards deposition, as evidenced by algae, foraminifera, and the echinoid

Fig. 26. Electric log signature of the Edwards Formation within the central portion of the East Texas basin. A strong resistivity “kick” most often characterizes the Edwards unit. The lower contact with the Comanche Peak is gradational and probably conformable. The upper abrupt contact with the Kiamichi suggests unconformity or a sudden change in depositional environment.

Fig. 27. Isopach of the Edwards Formation. The Edwards maintains a conspicuous thickness of 20 to 25 feet over the greater part of the basin. Marginal thickens are structure related. Hachured lines marking the southern and northern margins of Edwards isopachs represent the gradational zone with the upper Goodland Formation.
Fig. 28. Electric log signatures of the Goodland Formation. Goodland of the north is thinner than that of the south. The Goodland is time equivalent to both the Comanche Peak and Edwards Formations. On outcrop and in the subsurface, the Goodland reflects a decrease in clastics and an increase in carbonate content upward in the section, similar to the overall upward sequence in Comanche Peak and Edwards Formations.

population of the basal packstone (Corwin, 1982, p. 50).

Oolite shoals developed along the southeasternmost flank of the study area in Bell County (as indicated by oolitic grainstone and bioclastic-oolitic grainstone of the Shell Messer #1 core) and in Johnson County (the Cresson Member of the Goodland Formation) (Staples, 1977, p. 4). The Goodland of the north, deposited contemporaneously, indicates shallow normal marine to brackish waters (Staples, 1977, p. 55) and clear waters (Beddoes, 1959, p. 68-69). The Goodland of the south persisted under the same shallow, clear seas as during Late Comanche Peak deposition.

At about this time, slight shallowing permitted oolite shoals to develop into beaches along the western margin which forms a trend through Bell County. Evidence of shoaling is observed in upward sequence of the Shell Messer #1 core. Migration of tidal flat environments also occurred in the Bell County-Moffat Mound area. Evidence of such a regression is seen in the overall sequence of Shell Norwood #1 core.

Flourishing along the shelf edge were requienid rudist banks, as indicated by the requienid boundstone facies in the Shell Chapman #1 core. Considering the critical criteria for healthy reef growth, clear warm waters, abundant light, good circulation, and relatively high energy conditions, water depths must have been shallow. Along the shelf margin, seas were highly agitated and 10 to 15 feet deep (Bebout and Loucks, 1974, p. 16).

Caprinid coral mounds and coral stromatoporoid patch reefs thrived in the slightly deeper waters of the upper shelf slope, as indicated by caprinid-coral-wackestone and coral-boundstone facies seen in Shell Chapman #1 and Shell Humble #1. Upper shelf slope depths probably ranged from 10 to 50 feet (Bebout and Loucks, 1974, p. 16). The lower shelf slope was characterized by relatively deeper conditions ranging from 30 to 60 feet (Bebout and Loucks, 1974, p. 14), inferred from the presence of abundant micrite in the intraclastic wackestone and stylolitic mudstone facies seen in the Shell Humble #1 and Shell Johnson #1.

The vast back-shelf lagoon encompassing the rest of the study area was probably submerged under depths of no more than 30 feet. Evidence rests in the uniform thickness of 25 feet throughout most of the basin and

Fig. 29. Isopach of the Goodland Formation. The Goodland appears only in the extreme north and south of the study area, where the Edwards and Comanche Peak Formations can not be differentiated. The merging of the Edwards and Comanche Peak into the Goodland in the north is likely to be a function of sedimentation and bathymetry. Goodland deposition may reflect shallower conditions on a basin margin gentle slope. The remarkably thick Goodland section in the southern area is a result of continued sedimentation to match the subsidence rate.
the 30 feet of thickness maintained over much of the outcrop. The flat, uniform “table top” character of the rudist reefs in outcrop appears to be a reflection of maximum reef growth, which was limited by the water surface.

The end of Fredericksburg deposition was characterized by either a minor regression or a halt in sedimentation, resulting in an unconformity. Evidence for an unconformity includes the Kiamichi Clay-filled borings in Edwards surfaces, pitted upper surfaces, and effects of oxidation in the Edwards outcrop (Corwin, 1982, p. 38, 39; Kiamichi-filled borings in Goodland upper surfaces in North Texas and Oklahoma (Laali, 1973, p. 12-13); and brecciation and solution zones in a few subsurface Stuart City Reef cores (Bebout and Loucks, 1974, p. 12). However, no such occurrences were seen in the Stuart City Reef core in the present study.

Additional evidence of a possible unconformity is provided by the presence of dolomite crusts, burrows, discoloration (oxidation?), and leached zones in Norwood #1 and Messer #1 Edwards cores. The presence of Kiamichi-filled burrows, discoloration, and brecciation is not necessarily indicative of subaerial exposure or erosion, but may represent a depositional hiatus. Such burrows have been cited in lithified carbonate sediments in sea floors from great depths (Fischer and Garrison, 1969, p. 489; Bathurst, 1971, p. 363). Presence of such borings indicates a period of nondeposition in order for the process of intergranular cementation to occur (Bathurst, 1971, p. 363). Brecciation may be a result of subtidal slumping (Wilson and Jordan, 1983, p. 305). Thus it is possible that these occurrences represent a submarine discontinuity surface terminating late Edwards deposition.

However, so spotty is the information, that if indeed there was a regression at the end of Fredericksburg deposition, it may well have been on a local scale.

Structural Nature of the Basin

The regional structure of the basin was subdued. Absence of vertically stacked sedimentary cycles, lack of dramatically thick delta plain and prodelta facies, and absence of basinward thickening clastic wedges suggest that progradation exceeded basinal subsidence. Thus, slow uniform subsidence allowed rapid migration of facies across a broad flat surface. It is probable that migrating channels cut into subjacent delta facies during progradation, accounting for the presence of the point bar facies (seen in the McCrary #1 core) in the Lower Delta Plain environment (Fig. 5).

Sand distribution, thickness variations, and possible

--

Fig. 30. Paleogeologic map A. Upper Antlers (Paluxy equivalent) clastics entered the northern basin in response to the retreat of the Glen Rose sea. This shows the initial Paluxy deposits to have a regressive component and to be time equivalent to the upper Glen Rose Limestone. White areas represent gradational zones between the formations. It is important to note that these lines are arbitrary.

Fig. 31. Paleogeologic map B. Continued clastic influx created delta systems which rapidly prograded southward across a low energy, shallow water shelf. The northern basin was dominated by coarse land-derived clastics, while the southern basin was dominated by more marine shales and limestones during the maximum regression of the Glen Rose sea. White areas represent gradational zones between formations. It is important to note that these lines are arbitrary.
lateral facies changes can be linked to localized, salt-related structural activity (Seni, 1981b, p. 53). Fault adjustments on the northern perimeter of the Mexia-Talco system, possibly due to downdip Louann Salt creepage, allowed for greater Paluxy accumulation. Facies change across the fault system, from fluvial feeder tributaries to upper delta plain meandering channels, may have been triggered by simultaneous faulting.

Active growth of Van, Hainesville, and Hawkins salt anticlines occurred during Paluxy deposition. Paluxy distributaries apparently diverged upon reaching the positive salt features, accounting for the unusual thickness pattern (Seni, 1981b, p. 53). Thick clastic sequences are associated with anticline margins, while thin sand and shale units lie over the anticlines.

The remainder of the northern Salt Province was subject to rim salt withdrawal related to diapir growth (Seni, 1981b, p. 54). Sedimentation matched lateral withdrawal movement, allowing great accumulation within rim syncline areas. However, limited well control used in this study limits the delineation of individual rim synelines.

The northern Antlers Formation thickness of 1300 feet in Grayson County is approximately equal to the cumulative thicknesses of its equivalents (Twin Mountains, Glen Rose, and Paluxy Formations) (Lemons, personal communication, Feb. 7, 1987). This suggests that the subsidence rate did not increase during early Paluxy time, but continued uniformly through the Trinity-Fredericksburg transition. Thus, the Paluxy clastic invasion and northward thickening wedge may be due to possible renewed uplift in the source area or the result of climatic change accompanying increased sediment input.

Contemporaneous with the slow subsidence in the northern basin, affecting Paluxy sedimentation, was subsidence in the southern basin influencing Walnut deposition. Differential downwarping may have been controlled primarily by thermal cooling (Bott, 1971, p. 319-327) (though actual evidence for this is absent) accompanied by localized salt-withdrawal and structural subsidence.

Initial Walnut sediments apparently draped over the Glen Rose reef paleotopographic high, as evidenced by the elongate thin south of and parallel to the Angelina-Caldwell Flexure.

Accelerated subsidence existed east of the Mexia-Talco fault zone in the southeast basin during basal...

Fig. 32. Paleogeologic map C. Sediment influx gradually altered the deposition of Glen Rose Limestone to deposition of Walnut clays. Cessation of sediment input, accompanied by slow subsidence, allowed gentle inundation of the sea. This initial encroachment of the sea marked the beginning of the transgressive component in the Paluxy. In the clear waters of the southeast basin, middle limestones of the Walnut were being deposited. Overall basin subsidence remained slow and stable. Evidence of greater rates of local subsidence near salt features and fault zones are thicker Paluxy and Walnut accumulations. White areas represent gradational zones between formations. It is important to note that these lines are arbitrary.

Fig. 33. Paleogeologic map D. The Walnut sea continued to transgress, depositing laterally adjacent Bee Cave clays, Cedar Park and Keyes Valley limestones, and upper unnamed marls. Paluxy (Antlers equivalent) sedimentation persisted in the extreme northern part of the basin. White areas represent gradational zones between formations. It is important to note that these lines are arbitrary.
Fig. 34. Paleogeologic map E. Walnut facies shifted slightly northward as a result of continued subsidence and northward shoreline movement. Normal marine Comanche Peak sediments were deposited contemporaneously in the southeast portion of the basin. Paluxy equivalent systems remained in the northern basin. Paluxy equivalent sedimentation persisted longer in the extreme northern basin due to the proximity to the source area and to the shifting of the shoreline. The Upper Antlers (Paluxy equivalent) in the northern basin records both the initial retreat of the Glen Rose sea and the northward advancement of the Walnut sea, and thus possesses regressive and transgressive components in its overall sequence. White zones represent areas of gradation between formations. It is important to note that these lines are arbitrary.

Walnut deposition (Fig. 25). The greatest accumulations of the lower marls are present in Anderson County, probably in response to salt-withdrawal related to early development of diapir growth. By late Walnut deposition, salt movement shifted and localized to northern Leon County, significantly increasing Upper Marl sedimentation (Fig. 12).

The northern basin was probably a site of less sedimentation and less subsidence than the southern basin, as evidenced by the marked northward thinning middle limestone units and thin upper marls and oyster limestone of the northern basin (Figs. 12 and 13).

Dominant regional subsidence during Comanche Peak deposition was evidently to the south-southwest (Fig. 25). Localized subsidence appears to have been on a low scale. Salt movement diminished significantly. Downwarping of the Cass Syncline increased somewhat, allowing thicker accumulation of Goodland sediment (Fig. 14).

The structural nature of the Sabine Uplift area is uncertain. Granata (1963, p. 60) provided only general core descriptions as substantiation for a stable platform in the region (a porous, coquinoid, chalky or crystalline limestone characterizing the uplift area and a dense, argillaceous, fossiliferous limestone representing the uplift flanks). It is possible that the thick, massive limestones of the region reflect increased subsidence and detritus accumulation. Differential porosity may be a result of diagenetic processes, as interpreted by workers prior to Granata (Granata, 1963, p. 60).

Accelerated subsidence, coincident with Goodland deposition, occurred south of the Angelina-Caldwell Flexure. Rudist bank sedimentation matched subsidence to maintain the necessary shallow water environment. The increased carbonate sedimentation further enhanced the subsidence rate.

Eventually, by Edwards deposition, the East Texas basin had stabilized to the same degree as the adjacent Central Texas Platform. There was then no basin, but a broader, more extensive carbonate shelf. The uniform
thickness of the Edwards in the subsurface and surface exposures strongly supports this conclusion.

Subsidence south of the Angelina-Caldwell Flexure continually matched sedimentation, as indicated by the lack of diastemic surfaces or minor unconformities throughout the Goodland (Stuart City Reef) core. Subsidence did exceed sedimentation at the close of Edwards deposition, allowing deeper water, dark-colored marine shales to be accumulated.

POST-FREDERICKSBURG

Depositional Environments

After a brief hiatus with lithification of the Edwards, water deepened and Kiamichi terrigenous material invaded the basin from the north. The configuration of the Edwards surface governed distribution, for the Kiamichi apparently thins slightly over reef accumulations and pinches out near the Belton High of Bell County (Shelburne, 1959, p. 114; Bishop, 1967, p. 179). Beyond the Kiamichi pinchout, the Duck Creek Formation was deposited.

Expansion of the sea led to inundation of the western interior of the United States and allowed marine conditions to extend as far as Montana (Reeside, 1957, p. 513).

Structural Nature of the Basin

Downwarping of the basin was renewed by Kiamichi time, as suggested by the conspicuous thickens within the basin. The basinal axis was in the center of the study area. Salt movement may have contributed to some of the central basin thickening of the Kiamichi Clay (Fig. 38).

Fig. 36. Paleogeologic map G. Subsidence continued allowing an influx of normal marine conditions throughout the entire basin. Periodic runoff probably influenced deposition in the northern basin. Goodland (Comanche Peak equivalent) deposition occurred contemporaneously in the northern and southern portions of the basin. Subsidence in the north was minor in contrast to that of the south. South of the Angelina-Caldwell Flexure, sedimentation rate matched subsidence rate, allowing great thicknesses of Goodland to accumulate. White areas represent gradational zones between formations. It is important to note that these lines are arbitrary.

Fig. 37. Paleogeologic map H. Basinwide occurrence of a uniformly thick Edwards Formation suggests a possible brief pulse in sea level rise. Normal marine waters inundated the greater part of the basin. The Goodland (Edwards equivalent) was deposited contemporaneously in both the north and the south. The thin Goodland deposits of the north were apparently a function of sedimentation rate and bathymetry. The remarkably thick Goodland deposits of the south were a function of subsidence and sedimentation rate. The driving mechanism was probably subsidence, with the Angelina-Caldwell Flexure serving as the hinge line. Sedimentation load only augmented the subsidence. Both subsidence and sedimentation maintained equal rates, allowing for a substantial thickness of Goodland Limestone to accumulate. White areas represent gradational zones between formations. It is important to note that these lines are arbitrary.
SUMMARY AND CONCLUSIONS

1. The purpose of this investigation was to describe the stratigraphy of the Fredericksburg rocks of the East Texas basin, and on the basis of that description, to interpret their history and their relationship to the evolution of the East Texas basin.

2. The area of interest lies in northeastern Texas in the East Texas basin. It is bounded by the Ouachita fold belt, the Texas-Arkansas-Louisiana state borders, the Angelina-Caldwell Flexure, and the Central Texas Platform.

3. Principal methods used in this investigation included correlation and interpretation of electric well logs, construction of regional stratigraphic cross sections, construction of isopach and lithofacies maps, analysis of conventional cores, seismic interpretation, field reconnaissance in the Fredericksburg outcrop belt, and extensive literature research.

4. The Fredericksburg Group of the East Texas basin can be differentiated throughout the basin and can be divided into three stratigraphically distinct depositional areas—northern basin, middle basin, and southern basin.

5. On the basis of the following evidence, the Goodland Formation is considered to be undifferentiated Edwards and Comanche Peak Formations and time-equivalent to both. The two distinct units show a striking similarity in overall upward trend (decrease in clastics and increase in carbonate content) and gradual thinning or thickening toward the undifferentiated section.

6. The Upper Antlers Formation of the northern basin is considered to be the equivalent of the Paluxy Formation. Distinguishing characteristics between Upper Antlers and Lower Antlers are electric log signatures revealing upper stacked sand bodies and lower thin, alternating sand and shale units.

7. The subsurface contacts between Fredericksburg formations appear conformable. The Edwards/Kiamichi and Edwards/Duck Creek contacts are likely to be unconformable. The contact between the Goodland Formation and the Kiamichi Formation is probably unconformable.

8. Sand distribution, electric log character, spatial relationships, and core characteristics show four major Paluxy facies tracts and nine subfacies. Sixteen facies constituted the four Edwards environments. A network of seventeen Goodland facies make up the four shelf environments.

9. Fredericksburg deposition began with Paluxy River-dominated deltas prograding rapidly across a low energy marine shelf as the Glen Rose sea regressed. Clastic influx altered deposition from Glen Rose Limestone to Walnut Clay. Gradual cessation of terrigenous influx in concert with slow basin subsidence allowed encroachment of seas.

10. As the shoreline moved progressively northwestward, the basin received fewer clastics, and thus was influenced more by marine conditions, as recorded by the transgressive sequence.

11. By the time Edwards deposition occurred in the basin, normal saline to hypersaline marine waters prevailed. Conditions were uniform for the majority of the basin, possibly due to a sudden but brief rise in sea level.

12. Fredericksburg deposition was terminated by a period of either nondeposition or subaerial exposure, and the formation was later blanketed by the Kiamichi Shale.

13. Subsidence during Paluxy and Walnut deposition was greatest toward the central basin axis. Subsidence was enhanced locally by contemporaneous salt movement and fault activity.

14. During Comanche Peak deposition, subsidence shifted to the south-southeast, toward the actively subsiding shelf margin.

15. During Edwards deposition, a basin no longer existed. The area was a vast back-shelf lagoon landward from the Stuart City Reef trend. Although the East Texas basin was stable, forming the broad shelf lagoon,
relatively rapid subsidence occurred along the shelf edge.

16. Active basin subsidence followed Fredericksburg deposition as early as Kiamichi deposition. Post-Comanchean uplift on the Sabine Uplift stripped off upper Fredericksburg units.

17. The Fredericksburg represents a relatively quiescent period of subsidence in the overall evolution of the East Texas basin.

APPENDIX:

PREVIOUS WORKS

The first significant contribution to the understanding of Cretaceous strata of Texas was made by a German geologist's observations in the southern part of Texas. Ferdinand Roemer's geologic sketches, published in 1846 and 1848, concerned the division of Cretaceous rocks into the "Beds at the foot of the Highlands" (Austin Chalk-Gulfian) and the "Beds of the Highlands" (Fredericksburg-Comanchean). Unaware of the existence of the Balcones fault zone, Roemer misinterpreted the age of the beds forming the escarpment (Fredericksburg) as being younger than those at the foot of the hills (Austin). He did mention the possibility of a fault zone (cited by Thompson, 1935, p. 1508-1509).

G. G. Shumard served as a geologist for the United States Army in 1854. While in service, he mapped and named the Fort Washita limestone in the Red River area, north-east Texas (Thompson, p. 1509-1510).

Jules Marcou was the first geologist to identify Lower Cretaceous (Neocomian) fossils in North America found in Texas and western Oklahoma. His findings were not readily accepted (Thompson, p. 1509-1510).

B. F. Shumard's work during his term as state geologist of Texas led him to publish a landmark paper in 1860 in the Transactions of the St. Louis Academy of Science. He first named, described, and arranged a stratigraphic sequence of Cretaceous rocks in Texas. He labeled his formations the Caprina Limestone, Comanche Peak Group, and Caprotina Limestone, which are presently recognized as Edwards, Comanche Peak, and Glen Rose Formations, respectively. Overlooking Roemer's mistake in age interpretation, Shumard also reversed the order of the Cretaceous sequence.

First to record the proper sequence of Cretaceous strata was R. T. Hill in 1887. His subdivision of the Cretaceous is still accepted today as the older "Comanchean Series" and the "Gulfian Series." Hill observed that the rocks west of Fort Worth shared similar fauna to those described by Roemer (1852) near the town of Fredericksburg. Using the formation names established by Shumard (1860), Hill named the rocks the Fredericksburg Division. Originally, he included Shumard's "Caprotina Limestone" as part of the Fredericksburg Division, but later, in an 1888 paper, considered it to be of late Trinity age.

In 1891, Hill recognized the Kiamichi Formation as part of the Washita Series and revised Fredericksburg Division nomenclature. At this time, he considered the "Caprina Limestone" as the uppermost formation of the Fredericksburg Division, renamed Shumard's Comanche Peak Group as the Comanche Peak Chalk, named the strata underlying the Comanche Peak Limestone near Bosque County the "Walnut Clays," and named and described the sand exposures near the town of Paluxy the "Paluxy Sand," including it within the Fredericksburg Division. Hill used the term Goodland in Oklahoma for the northern lateral correlatable units of the Comanche Peak Limestone.

The name "Edwards Limestone" was first used to describe the "Caprina Limestone" in 1898 by R. T. Hill and T. W. Vaughan. Included in the paper were interpretations that Paluxy was part of the Trinity Group and the Goodland Limestone was the northern equivalent of the Edwards and Comanche Peak Limestones.

A summary of Fredericksburg Group classification was presented in 1901. The Edwards, Comanche Peak, and Walnut Formations were discussed in detail, describing their lateral extent, thickness, and significance. The Paluxy Sand was considered part of the Trinity Group, although Hill commented that the Fredericksburg-Trinity boundary was difficult to determine.

L. W. Stephenson (1918) described the Goodland of northeast Texas and the Trinity of central Texas. He first named, described, and arranged a stratigraphic sequence of Cretaceous rocks in Texas. Hill observed that the rocks west of Fort Worth shared similar fauna to those described by Roemer (1852) near the town of Fredericksburg. Using the formation names established by Shumard (1860), Hill named the rocks the Fredericksburg Division. Originally, he included Shumard's "Caprotina Limestone" as part of the Fredericksburg Division, but later, in an 1888 paper, considered it to be of late Trinity age.

In 1891, Hill recognized the Kiamichi Formation as part of the Washita Series and revised Fredericksburg Division nomenclature. At this time, he considered the "Caprina Limestone" as the uppermost formation of the Fredericksburg Division, renamed Shumard's Comanche Peak Group as the Comanche Peak Chalk, named the strata underlying the Comanche Peak Limestone near Bosque County the "Walnut Clays," and named and described the sand exposures near the town of Paluxy the "Paluxy Sand," including it within the Fredericksburg Division. Hill used the term Goodland in Oklahoma for the northern lateral correlatable units of the Comanche Peak Limestone.

The name "Edwards Limestone" was first used to describe the "Caprina Limestone" in 1898 by R. T. Hill and T. W. Vaughan. Included in the paper were interpretations that Paluxy was part of the Trinity Group and the Goodland Limestone was the northern equivalent of the Edwards and Comanche Peak Limestones.

A summary of Fredericksburg Group classification was presented by Hill in 1901. The Edwards, Comanche Peak, and Walnut Formations were discussed in detail, describing their lateral extent, thickness, and significance. The Paluxy Sand was considered part of the Trinity Group, although Hill commented that the Fredericksburg-Trinity boundary was difficult to determine.

L. W. Stephenson et al. (1942) correlated the Lower Cretaceous outcrops throughout Texas, Oklahoma, Missouri, Illinois, and Kentucky, and into Mexico.

Following Hill's (1937) designation, F. E. Lozo, in 1949, considered the Paluxy Formation to be within the Fredericksburg Group. Four members were designated in the overlying Walnut Formation, a basal limestone member, a lower clay unit, a middle limestone member (Cedar Park), and an upper marl unit. H. F. Nelson (1949) considered the relationship between the biotal/diagenetic facies and the interbiohermal facies of the
Edwards. He recognized (1) lateral gradation into one another with
no structure, (2) lateral gradation with change of thickness as traced
into bedding, thus structure exists, and (3) nongradation with
interbiotomal facies onlapping or pinching out against bioherms.
J. P. Brand, in 1953, examined the paleontologic, stratigraphic,
and structural relationship of the Cretaceous formations in the Llano,
Estacado region. He observed that the Trinity Group (Antlers Sand)
and the Fredericksburg Group (Walnut Clay, Comanche Peak,
Edwards) share similar lithologic and paleontologic characteristics with
Callahan Divide equivalents.
W. L. Fisher (1959) studied the Fredericksburg Group as
a whole, dividing it into 3 facies: (1) marginal or littoral facies; (2)
neritic facies; and (3) biotomal facies. Emphasis was on description
of the lithology and fauna of the biotomal facies of the Edwards
Formation.
L. P. Beddoes (1959) identified an abundance of calcareous,
benthonic forams in the lower Goodland section. In the upper part
of the unit, an abundance of agglutinated benthonic forams was noted.
The Fredericksburg outcrop along the western margin of the East
Texas basin was described by J. B. Jamison (1959). He divided the
Edwards into four distinct facies. Subsurface analysis included log
correlation and construction of isopach maps.
The Fredericksburg Group of north central Texas were correlated
with adjacent subsurface units by F. E. Lozo (1959, p. 1-21). A cross
section from Tarrant County to Williamson County showed thickness
trends and regional unconformities.
H. F. Nelson (1959, p. 21-45) discussed the three modes of dolomite
occurrence in the Edwards Formation. Dolomite occurs as primary,
diagenetic, and post-lithification types. Nelson noted more extensive
alteration, where the underlying Kiamichi Formation is absent.
The Kiamichi Formation in central Texas was divided into three
facies by O. B. Shuburne (1959, p. 105-119). The Kiamichi was
to be governed by the underlying Edwards facies. Shuburne attributed
Kiamichi thinning to southward collapse of sediments on an uneven
surface rather than an unconformity.
K. P. Young (1959, p. 97-104) established that a distinct fossil
zoozone exists within the Edwards Limestone in Bosque, Hill,
and Johnson Counties. His paleoecological study concentrated on the
use of fauna as depth indicators.
The Edwards Formation in Bosque County was studied in detail
by W. R. Payne (1959). He concluded that biotomal facies were
more prevalent than biotomal facies as a product of environmental
conditions. The reef system flourished to the end of Fredericksburg
time in the area. He noted also the Edwards-Comanche Peak contact
varied from abrupt to gradational. He considered the Comanche Peak
as a time-equivalent lagoonal facies of the Edwards.
W. A. Ables (1962) discussed the Fredericksburg Formation in terms of
thickness, provenance, paleontology, and nature of the Paluxy-Walnut
contact throughout the central Texas area.
J. G. Frost (1963) divided the Edwards Limestone of central Texas
into three facies; inter-reef dolomites, massive reef, and back reef fine­
grained dolomite.
The structural development of the Sabine Uplift area throughout
Cretaceous time was investigated by W. H. Granata Jr. (1963), who
believed the area was a broad relatively stable platform arch separating
the subsiding northeast Texas and northwest Louisiana basins.
G. L. King (1965) studied variations of the Edwards Limestone of Coryell
County, and associated carbonate build-up of Edwards Limestone,
the pinchout of Kiamichi Shale, and the pinchout of Paluxy Sand in Bosque
County to the presence of a structural hinge that affected Fredericksburg
deposition.
In the south-central region, outcrop lithologies and petrographic
data were traced by C. H. Moore, Jr. (1965) to determine stratigraphic
and facies relationships. He recognized six members in the Walnut
Formation, with two being time-equivalent. An anomalous Edwards
facies near Moffat, Bell County, he attributed to be the lateral
equivalent of the underlying Comanche Peak to the northwest.
J. O. Jones (1966) described in detail the fossil and lithic content of the
Walnut Clay, in which he recognized six members. Correlations from
surface localities into the subsurface were made.
C. H. Moore and K. G. Martin (1966) studied the Paluxy Sand in
Travis, Williamson, and Burnet Counties, describing the lithology,
facies relationships, and depositional history. They divided the
formation into five facies, and interpreted the sand as a product of a
temporal environment between coastal and marine settings.
D. L. Ambury (1967) examined lower Cretaceous strata in central Texas
and believed them to represent soil profiles. The existence of a soil profile
in the Paluxy, Ambury noted, provides a basis for subdivision of the formation into 2 members. He suggested
division of the Antlers be handled in the same manner.
W. L. Fisher and P. U. Rodda (1967a) described the stratigraphy
and petrographic chemical properties of the Paluxy and Antlers of north­
central and west-central Texas. Three facies were recognized in the
Antlers, of which the upper facies was correlated to the Paluxy Sand.
That same year (1967b), the Edwards Formation was divided into
three facies in a second publication by W. L. Fisher and P. U. Rodda.
The facies included (1) a rudist-biohermal-biostromal facies; (2) a
platform grainstone facies; and (3) a lagoonal facies. In addition, they
named the area of restricted evaporite deposition the "Kirschberg
lagoon." They also divided the dolomites of the Edwards into (1) stratal
dolomite and (2) massive dolomite.
Comanchean stratigraphy and paleontology of Texas were
published in a Permian Basin Section of Economic Paleontologists
and Mineralogists publication in 1967. Articles of importance to this
investigation were written by O. T. Hayward, L. F. Brown, Leo
Hendricks, and B. A. Bishop. Studies concentrated on lithologic and
petrographic descriptions of the Trinity, Fredericksburg, and Washita
Formation.
Recognition of a regional caliche facies in the basal Cretaceous
areas of the Callahan Divide and Lampasas Cut Plain by Castle
(1969) allowed for correlation between Paluxy and Antlers equivalents.
This caliche horizon serves as a marker between the Paluxy and Trinity
Sands within the Antlers Sands. He interpreted the calciche as being
progressively younger eastward as it developed on Paluxy deltaic
sediments.
Edwards dolomite facies of central Texas delineated by W. L.
Fisher and P. U. Rodda (1969), form a concentric belt bordering the lagoonal
facies of the Kirschberg lagoon. The origin of the two types of dolomite
differed in timing element and physical environment. Stratal dolomite,
most common of the southern lagoonal margin, preceded lithification
primarily as a result of supratidal conditions. Massive secondary
dolomite was explained by a seepage-refluxion model.
Stuart City reefs and El Abra reefs were compared to modern analogs
have certain elements in common with Florida Bay reefs. All have
linear barrier systems separating shallow water carbonate platforms
from oceanic deeps.
Moore's (1969) stratigraphic and regional facies framework of west
central Texas incorporated the Fredericksburg rocks of the Lampassas
Cut Plain, the Callahan Divide, and the northern Edwards Plateau
region. Moore introduced the term "Walnut-Comanche Peak
undifferentiated" for the carbonate sequence in the Callahan Divide.
The pre-Washita unnamed upper formation containing the "Dr. Burt
Ammonite Bed" was extended by Moore from the Edwards Plateau to
the Callahan Divide.
The Skelly-Hobbs Rudist Reef Complex (Marcantel, E. L., 1969)
defined the geometry, four facies, and the depositional history of this
complex. He recognized the areas as a Fredericksburg topographic
high, a broad, shallow-to-emergent platform allowing supratidal
conditions. Nine facies were described. Depositional history was
reconstructed by use of renal lithofacies maps and he described the
dolomite sequence of west-central Texas as correlatives with the
Kirschberg evaporite of the Edwards Plateau.
The Fredericksburg section of the Callahan Divide was divided into
seven time-equivalent depositional units by A. L. Boutte (1969), who
based the division on bored surfaces. Depositional conditions were
similar to those for the Walnut, Comanche Peak, and Edwards
Formations.
Perkins (1969) noted that five of the seven rudist families are present
in the Edwards Formation. The paleoecology of these sessile, marine
organisms varies with each family.
M. H. Mosteller (1970) discovered evidence of tectonic and/or salt
withdrawal movement within the Mexia-Talo fault zone through
subsurface correlations made in the southeast East Texas basin. Salt
withdrawal was concentrated in Anderson County, and the Texas Craton and Stuart City Reef trend were structurally stable during Comanchean time.

The Antlers Sand in the Callahan Divide was described by C. C. Smith in 1971, who agreed with Castle (1969) that the caliche layer represented an ancient soil horizon. Smith proposed that the Fredericksburg-Trinity boundary be placed at the caliche zone. P. A. Boone (1972) also considered the Antlers Formation in a broad region of west-central Texas. Eight facies were recognized: point bar, floodplain, delta, marine bar, bay-lagoon, terrigenous, shallow shelf, and open marine platform carbonates.

The Golden Lane and Poza Rica Reef trend of eastern Mexico were studied by H. Coogan, D. G. Bebout, and Carlos Maggio (1972), who concluded that these trends are time equivalent to the Stuart City Reef trend. The depositional facies of the two trends were found to be similar, but the geologic histories were believed to have been different.

The Comanche Peak-Edwards contact was studied by W. A. Mudd (1972) in McLennan, Coryell, Hamilton, and Bosque Counties. Initial Edwards deposition began with Lenticolites attachment to three different substrate types (1) Diictyocereus mats; (2) Cladophylla mats; and (3) burrow-solidified carbonate mud.

A study of circular bioclastic and angular bioclasts of central Texas by J. E. Roberson (1972) concluded that elongate wave-resistant reefs along the platform margin protected the back reef mounds or bioclasts. Elongate reefs grew laterally, while cone-shaped bioclasts grew radially and upward to a specific height.

The Edwards Group of south central Texas was investigated by P. R. Rose (1972), who utilized field and subsurface data to establish depositional history. Rose proposed as new formation names in the Edwards Plateau, the Fort Terrett and Segovia. Along the Balcones fault zone and San Marcos Platform he divided the Edwards Group into the Person and Kainer Formations. He defined nine depositional environments on the Comanche Shelf: open deep marine, open shelf, shallow shelf marine (moderate to high wave energy), open-shallow marine (low wave energy), restricted shallow marine, tidal flat, euryhaline-evaporitic shelf basin, evaporite-dominated supratidal flat, and coastal terrigenous.

Hoonam Laali (1973) described horizons in top of the Goodland Formation filled with Kiamichi Clay in Tarrant County, Texas and Chotaw County, Oklahoma. He interpreted this as evidence of a unconformity.

S. A. Mizell (1973) defined three petrographic facies of the Edwards in McLennan, Bosque, and Coryell Counties, lime wacke-boundstone facies, calcarenite facies, and coarse calcarenite facies, and interpreted them as products of wave action related to proximity to the reef core. Within Bosque, McLennan, and Bell Counties, Edwards relationships to adjacent formations were established by H. F. Nelson (1973), who noted that secondary dolomite present at most localities differed from that of the Kirschberg lagoon facies to the west.

A study of the morphology of the Edwards in the central portion of the Edwards Plateau by Sandlin in 1973, included stratigraphy, physical character, paleontology, structure, petrography, chemical character, and depositional history. He concluded that the Goodland and the Comanche Peak share the same lithicologic characteristics, thus are adjacent parts of the same lithosome.

D. G. Bebout and R. G. Loucks (1974) described five environments of Stuart City Reef deposition in south Texas: (1) shelf lagoon; (2) shelf margin; (3) upper shelf slope; (4) lower shelf slope; and (5) open marine. Diagenesis had destroyed original porosity. Extent of oyster banks, fossil assemblages, and lithology of five members of the Walnut Clay of central Texas were described by C. D. Flatt (1976), who concluded that lithic variations reflect slight variations in environmental conditions.

Steven L. Keyes (1976) focused on the relationship between the Edwards' upper surface and overlying Kiamichi sediments. In agreement with earlier work, Keyes considered the Kiamichi Member part of the Geothamnophyllum Formation unconformable with the Edwards Formation. Thus, the Edwards marks the termination of a transgressive cycle.

G. B. Lambert (1976) discussed the diagenesis of the Edwards Formation of central Texas, and concluded that diagenesis began with marine cementation and pyrite formation. Comanchean was the product of contemporaneous seepage refluxion and silification. Dissolution followed. Subaerial exposure introduced pyritic cementation. Present diagenetic changes are in the form of karst solution and travertine deposition.

T. A. Bay, Jr. (1977) constructed regional cross sections of Fredericksburg and Washita groups across the Central Texas Platform to determine the sequence and depositional history. Using seismic profile, he also identified the Glen Rose as the product of deposition on a ramp and Fredericksburg-Washita rocks as indicators of deposition on the shelf margin.

C. A. Cengage (1977) recognized three major facies in the subsurface Paluxy Sand in the East Texas basin: (a) a delta facies; (b) a fluvial facies; and (c) a shoreline facies.

Five of the six families of rudists are present in Fredericksburg rocks according to works by A. H. Coogan (1977) who described the morphology of each family.

A. D. Jacka and J. P. Brand (1977) studied two diagenetic zones within the Edwards Formation, to provide a diagenetic history including marine diagenesis, early diagenesis (micritization and vadose- phreatic groundwater diagenesis), and late diagenesis (calichification and silification).

Kerr (1977) reviewed the history of the Moffat Mound of Bell County and recognized six major lithofacies, reflecting progradation. Three stages of diagenesis were delineated in his work.

Sue L. Keyes (1977) divided the Comanche Peak Formation of central Texas into three facies: (1) a lower unit of thin Texiergypsea beds and nodular limestone; (2) a middle unit of nodular limestone, thin-beded limestone, and marl; and (3) an upper unit of chalky bioturbated limestone and marl. She believed the facies represented variable salinity conditions.

E. McFarlan, Jr. compared the transgressive-regressive cycles of the Lower Cretaceous sediments in the Gulf Coast with a global cycle of eustatic sea level fluctuations and concluded that major transgressions and unconformities correlate, but the minor events of Fredericksburg time do not correspond.

Michael Molina (1977) studied the coral-rudist relationships in the Edwards Limestone. He interpreted the assemblage as a life-death association, with the dead corals serving as a woven framework to which the living rudists were attached.

The Stockton Plateau-Big Bend area was studied by R. W. Scott and E. J. Kidson (1977). Their work established four depositional environments for the Lower Cretaceous in that region—a coastal plain, carbonate shelf, platform/margin, and shelf basin.

The Goodland was divided into three members based on lithology and paleontology by M. E. Staples (1977). He divided these members into time-transgressive deposits in broad areas. Michael Molina (1977) recognized five facies and two micro-facies within the bounding reef facies of the Edwards Formation. He interpreted vertical and lateral facies relationships to indicate a ramp system with extensional faulting to the north and subsidence of the northern sector of the Edwards Formation.
of the East Texas basin. The initial stage involved uplift, rifting, rapid fault-controlled subsidence accounting for the thick rift fill, evaporites, and sand thickening toward the basin center during Triassic, Jurassic, and Lower Cretaceous. During the middle phase, which includes deposition between the Massive Anhydrite of the Lower Glen Rose and the Upper Cretaceous Navarro Group, the basin was more stable. Again, various rates of sedimentation and subsidence occurred in the final phase, with Tertiary fluvial and delta systems filling the formerly marine basin.

S. J. Seni (1981b) studied depositional systems and related activity during Paluxy time. Thickness variations which occur along the northern periphery (Nexia-Talco fault zone) and basin center are associated with palaeotopographic syncline patterns. Salt structure patterns within the East Texas basin were recognized by O. H. Wood (1981). Salt domes occur primarily along the axis where overburden was the greatest and Louann Salt the thickest. Salt diapirs exist along the periphery. Antelines are scattered, but most abundant within the basin center.

Linda Whigham Corwin (1982) discussed in detail the Fredericksburg stratigraphy of the Colorado River. The nature of overlying and underlying contacts, as well as those contacts between formations, were included. Subsurface log correlations were made along the western margin of the East Texas basin. Depositional history of the Fredericksburg incorporated the outcrop exposures and subsurface data.

The East Texas basin margins are outlined by structural features dating from Pennsylvania to Tertiary as noted by M. P. A. Jackson (1982). The three major fault systems of the basin, the Mexia-Talco, Elkhart-Mount Enterprise, and Central Basin, he believed occurred in response to local and regional Louann Salt movement.

The anomalously Edwards thickening in Bell County, the Moffat Lentil, was given special attention in 1984 by D. L. Ambury, T. A. Bay, Jr., and F. E. Loucks. Core analysis showed the Lentil to be a persistent shaly sand bounded by lime wackestone and marl to the northeast and tidal flat sediments to the southwest.

The Upper Antlers Sand in north Texas was correlated to the Paluxy Formation of central Texas by J. C. Brothers (1984). The deposits reflect a brief period of deposition braided streams, followed by a depositional hiatus and caliche development. Deposits of meandering systems overlie the caliche section. These are in turn buried by Walnut Clay. Three major input avenues were defined by Brothers and described as reactivated paleodrainage systems.

B. R. Man (1984) interpreted the depositional history of the East Texas basin at Fredericksburg by a fluctuation of electric log signatures and lithologic descriptions of the Fredericksburg section. Type log and signature descriptions were given for each horizon.

The Upper Fredericksburg was studied by A. D. Walker (1984), who focused on the transition of the Goodland into other Fredericksburg units. Two north-south cross sections were constructed, one surface and the other subsurface. She concluded that the Goodland shared facies with the Comanche Peak, but is time-equivalent to both Comanche Peak and Edwards Limestone.

REFERENCES

(1959) Stratigraphic relations of the Edwards Limestone

Scott, G. (1930) Stratigraphy of the Trinity division as exhibited in Parker County, Texas: University of Texas Bulletin 301, p. 35-52.

the thesis, Louisiana State University, 123 p.

INDEX

Abilene, Tx 10
Adkins, W. S. 32
algae 25
Arnold, D. L. 33, 35
Anderson Co., Tx 29, 39
Angelina-Caldwell Flexure 5, 11, 19, 28, 29, 30, 31
anhedrite 25
Antlers
Fin. 10, 22, 28, 31, 34
Sand 8, 11, 33, 34, 35
Arbuckle-Ouachita system 5, 22, 31, 34
Arkansas 10, 31
Atlee, W. A. 33
Aurora Limestone 10
Beds of the Highlands 32
Beds at the foot of the Highlands 32
Bay-lagoon facies 34
"Beds of the Highlands" 32
Bee Cave Member 22, 24
Bell Co., Tx 8, 26, 30, 33, 34, 35
Benton High 8, 30
benthonic forams 33
Big Bend region 10, 34
bioturbation facies 32-33, 34
bioratal facies 32-33, 34
Bishop, B. A. 33
Bosque Co., Tx 32, 33, 34
borings 17, 27, 34
Buda Fm. 10
Brown, L. F. 33
Brothers, J. C. 35
Brand, J. P. 33, 34
Boutte, A. L. 33
Boone, P. A. 34
boring 17, 27, 34
Bosque Co., Tx 32, 33, 34
boundstones 26, 34
Bullard, F. M. 32
Bull Creek Member 22, 24
Burnet Co., Tx 33
burrows 27
burrow-solidified carbonate mud 34
calcareous facies 34
calcium carbonate 11
caliche 8, 10, 33, 34, 35
"Callahan Complex" 10
Callahan Divide 10, 33, 34
Caprina Limestone 32
Caprind 26
Carpotina Limestone 32
carbonate reefs 22
carbonate 11, 16, 19, 29
casehardening 17
Cass Syncline 11, 13, 29
Castle, R. A. 33, 34
Caughley, C. A. 34
Cedar Park Member 22, 24, 32
Central Basin 11, 35
Central Texas Platform 5, 10, 22, 29, 31, 34
channel fill 22
Cheyenne Sandstone 10
Chicotaw Co., Ok 34
Cladophyllia mats 34
clam shell 25
clastics, 11, 19, 22, 24, 28, 31
clay 8, 11, 13, 14, 15, 16, 24, 25
Colorado River 35
Comanchean
sea 22
Series 5, 6, 32

shelf 19, 22, 34
Comanche Peak
Chalk 32
deposition 25, 26, 29, 31
Fin. 6, 8, 10, 11, 14, 15-16, 24, 31, 32, 33, 34, 35
Group 32
Limestone 17, 32
time 19, 34
Concho Arch 10
Coogan, A. H. 34
Cooke Co., Tx 8, 32
coral mounds 26
coral patch reefs 26
corals 6, 7
Corwin, L. W. 35
Coryell Co., Tx 33, 34
Cresson Member 26
Cuba 9
Del Rio Fm. 10, 17
delta facies 34
Devils River Fm. 10
diagenesis 34
diapirs 28, 29, 35
diagenesis 34
discoloration 27
dolomite 9, 10, 22, 25, 33, 34
downwarping 28, 29, 30
"Dr. Burt Ammonite Bed" 33
Duck Creek Fm. 9, 17, 30, 31
echinoids 25
Edwards
deposition 25, 27, 29, 30, 31
Fin. 6, 8, 9, 10, 11, 16-17, 19, 27, 30, 31, 32, 33, 34
Limestone 16, 25, 32, 33, 34, 35
Platte 9, 10, 33
time 19
El Abra
Fm. 10
reefs 33
Elkhart fault system 35
"Eocene" 35
eustacy 19, 34
evaporites 10
Eugyra oyster beds 14
faulting 28
Fisher, W. L. 33
Flatt, C. D. 34
floodbasin facies 34
Florida Bay reefs 33
fluvial-deltaic complex 13, 22
deposition 11
foraminifera 25
Fort Terrett Fm. 10, 34
Fort Washita Limestone 32
Fort Worth
Prairie 5, 8
, Tx 32
Fredericksburg
deposition 27
Division 32
sea 22, 24, 25
time 22
, Tx 32
Frost, J. G. 33
Gatesville Fm. 32
Georgetown Fm. 34
Glen Rose
deposition 22
Fin. 10, 11, 28, 32
Limestone 11, 12, 14, 24, 31, 32
sea 31
Llano
Estacado 7, 30, 32
Upfold 10
Louann Salt 28, 35
Loucks, R. G. 34
Gulf of Mexico 9, 19, 22
gypsum 10
Haineville anticline 13, 28
Hamilton Co., Tx 34
Harral, D. W. 34
Hawkins anticline 13, 28
Hayward, O. T. 33
Hendricks, L. 33
Hensel Sand 10
Hill Co., Tx 33
Hill, R. T. 32
Humble Oil & Gas Co. 19, 21
Hunks, W. C. 32
Illinois 10, 32
interbiohermal facies 32-33
interdistributary bay facies 22, 24
Jacka, A. D. 34
Jackson, M. P. A. 34, 35
Jameson, J. B. 33
Johnson Co., Tx 26, 33
Jones, J. O. 33
Kainan Fm. 9, 34
Kansas 10
Kentucky 10, 32
Kerr, R. W. 34
Keyes, Steven L. 34
Keyes, Sue L. 34
Keyes Valley Member 24
Kiamichi
Clay 27, 30, 34
deposition 19, 30, 32
Fin. 9, 11, 17, 30, 31, 32, 33
Member 34
Shale 31, 33
time 30
Kidson, E. J. 34
King, G. L. 33
Kiowa Shale 10
Kirschberg Evaporite 10, 22
"Kirschberg lagoon" 33, 34
Kreitler, C. W. 34
Laali, H. 43
Lambert, G. B. 34
Lampasas Cut Plain 5, 8, 9, 10, 33
Loon Co., Tx 39
limestone 8, 9, 10, 13, 14, 15, 16, 17, 24, 25, 29
, argillaceous 22, 24
, biomicritic 8
, nodular 8, 10, 15, 34
, pelletal-oolitic 8
, rudist-bearing 8
linear barrier systems 33
littoral facies 33
Llano
Estacado 7, 10, 32, 22
Upfold 10
Louann Salt 28, 35
Loucks, R. G. 34
BAYLOR GEOLOGICAL
PUBLICATIONS*

Baylor Geological Studies

1-7, 12, 16-25, 30: Out of print. For titles see earlier Baylor Geological Studies Bulletins.

Baylor Geological Society

101-134, 137, 138: Out of print. For titles see earlier Baylor Geological Studies Bulletins.

142. The nature of the Cretaceous-precretaceous contact, Central Texas (1979). $4.00, a professional level guidebook.

144. A day in the Cretaceous (1980). $1.50.

*Publications available from Baylor Geological Studies or Baylor Geological Society, Baylor University, Waco, Texas 76798. Prices do not include shipping and handling costs. Texas residents add eight percent sales tax.

Part of Urban geology of Greater Waco, a series on urban geology in cooperation with Cooper Foundation of Waco.