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Abstract

A nonparametric method and a Bayesian hierarchical modeling method are proposed in this paper for the detection of
environmental thresholds. The nonparametric method is based on the reduction of deviance, while the Bayesian method is based
on the change in the response variable distribution parameters. Both methods are tested using macroinvertebrate composition
data from a mesocosm experiment conducted in the Everglades wetlands, where phosphorus is the limiting nutrient. Using the
percent of phosphorus tolerant species and a dissimilarity index as the response variables, both methods resulted in a similar and
well-defined TP concentration threshold, with a distribution function that can be used to determine the probability of exceeding
the threshold.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Anthropogenic perturbations such as landscape
fragmentation, cultural eutrophication, or introduction
of toxic substances often cause changes in structure
and function of aquatic and terrestrial ecosystems.
For example, in the USA it is estimated that nearly
40% of all water bodies are ecologically impaired by
various pollutants(USEPA, 1998a). Studies of how
an ecosystem responds to such disturbances have
important management implications, such as the es-
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tablishment of water-quality or emission standards for
particular geographic regions(Adams and Greeley,
2000). One common approach to establishing envi-
ronmental criteria is to examine changes of selected
population, community, or ecosystem attributes along
a gradient of environmental conditions (e.g.Karr and
Chu, 1997). Ecological attributes often show little
change until a critical environmental value, or thresh-
old, is reached(Fore et al., 1996; Richardson and
Qian, 1999). Thus quantitative description of such
exposure–response relationships can be very useful
in support of the development of numerical environ-
mental criteria(Suter, 1993; USEPA, 1998a).

Although the identification of environmental thresh-
olds is deeply rooted in ecological risk assessment
(Suter, 1993), surprisingly few statistical techniques
are appropriate for their detection. Many traditional
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statistical techniques are not suitable for estimating
such thresholds, nor are they adequate for estimating
uncertainty in their predictions, both of which are crit-
ical components in ecological risk assessment(Bartell
et al., 1992; Suter, 1993, 1996; Lemly and Richard-
son, 1997; USEPA, 1998b). Also, most methods re-
quire parametric assumptions, such as normality and
linearity, that ecological data rarely meet (e.g.Clarke,
1993). Rather, ecological responses to environmental
gradients often are nonlinear, non-normal, and het-
eroscadistic(Legendre and Legendre, 1998).

We propose two statistical methods for detecting
a changepoint along an environmental gradient. The
methods presented here can be seen as part of the
larger effort of using mathematical and statistical mod-
els to study wetland ecology (e.g.Wang and Mitsch,
2000; Shukla, 1998; Buzzelli et al., 2000; Loiselle
et al., 2000; Moreno-Grau et al., 1996) and to make
risk assessment (e.g.Findlay and Zheng, 1999). The
second method is also part of the increasing inter-
est in the application of Bayesian statistics in the
Ecol. Model. community (e.g.Omlin and Reichert,
1999; Prato, 2000; Reichert and Omlin, 1997; Stein-
berg et al., 1997; Borsuk et al., 2001; Aldenberg et al.,
1995).

Our methods are, however, explicitly designed to
detect ecological changes along an environmental gra-
dient, and may be useful in criteria development be-
cause they (1) estimate discrete, numerical values of
the predictor variable that lead to ecological changes,
(2) provide an estimate of uncertainty by generating
confidence limits, and (3) make very few assumptions
regarding properties of the data.

The first method is a nonparametric approach that
finds a changepoint that results in the largest reduction
in the deviance of the response variable. The second
method is based on a Bayesian hierarchical modeling
approach. We present the statistical basis of these two
methods and demonstrate the application using a data
set collected from an experimental nutrient gradient in
an Everglades wetland.

2. Method

Let y1, . . . , yn be the sequence of the ecological
response variable observed along the ordered environ-
mental gradientx1, . . . , xn. A changepoint problem is

to find r (1 ≤ r ≤ n) that separates the response vari-
able into two groups:y1, . . . , yr and yr+1, . . . , yn,
each with distinct characteristics such as the mean and
the variance. The corresponding value of the environ-
mental variablexr is the threshold.

2.1. The nonparametric deviance reduction approach

The nonparametric deviance reduction approach is
based on the idea that a structural change in an ecosys-
tem may result in the change of both the mean and the
variance of the ecological response variable used to
indicate the change. When the observations from mul-
tiple sites are ordered along the gradient, the thresh-
old or changepoint separates the observations into two
groups. Each is relatively homogeneous. This idea
was inspired by the tree-based modeling approach
(Breiman et al., 1984), where binary splits were used
to construct a predictive regression or classification
model.Guisan and Zimmermann (2000)andQian and
Anderson (1999)are two examples of application of
tree-based model in ecological studies. The concept
of deviance reduction was used to develop the method
for environmental threshold estimation and a boot-
strap method was used to quantify uncertainty about
the threshold.

The deviance(Venables and Ripley, 1994), a mea-
sure of homogeneity, is defined for a continuous vari-
able, as:

D =
n∑
k=1

(yk − µ)2 (1)

whereD is the deviance,n is the sample size, andµ
is the mean of then observationsyk. For a categorical
variable, the deviance is defined as:

D = −2
g∑
k=1

nk log(pk) (2)

whereg is the number of classes,pk is the proportion
of observations andnk is the number of observations
in classk, respectively.

When the response data are divided into two groups,
the sum of the deviance for the two subgroup is al-
ways less than or equal to the deviance of the entire
data. Each possible changepoint is associated with a
deviance reduction:

∆i = D− (D≤i +D>i)
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where D is the deviance of the entire data set
y1, . . . , yn, D≤i is the deviance of the sequence
y1, . . . , yi, andD>i is the deviance of the sequence
yi+1, . . . , yn, wherei = 1, . . . , n. The changepointr
is thei value that maximizes∆i : r = maxi∆i.

Uncertainty about the changepoint can be esti-
mated by using a bootstrap simulation(Efron and
Tibshi rani, 1993)and expressed as a 90% confi-
dence interval. This uncertainty may be interpreted
as a recognition that a changepoint may be best
represented as a small range of values rather than
one discrete value. A second consideration is that
the deviance reduction approach will always find a
changepoint no matter whether there is a real eco-
logical change or not. Thus, we use the approximate
χ2 test to judge whether the resulting changepoint is
statistically significant. Theχ2 test is based on the
fact that the deviance reduction divided by the scale
parameter is approximatelyχ2 distributed (d.f . = 1)
(Venables and Ripley, 1994). A large deviance reduc-
tion will result in a smallP-value, thus the rejection
of the null hypothesis of no changepoint.

Our method is consistent with the tree-based model-
ing approach. In fact, the changepoint is the first split
of a tree model whenx is used as the single predic-
tor variable. As a result, the commonly available tree
model software (e.g.rpart in S-Plus and R) can be
used. In this paper, we wrote an S-Plus function to cal-
culate the changepoint and used the S-Plus function
bootstrap to evaluate the uncertainty.

2.2. The Bayesian hierarchical modeling approach

Under a Bayesian framework, we make specific
probabilistic assumptions about the ecological re-
sponse variable. Specifically, we assume that the
response variable values,y1, . . . , yn, collected from
the n sites along the gradient of interest, are ran-
dom samples from the sequence of random variables
Y1, . . . , Yn. In other words, we define a random vari-
able for each site, and assume that these random
variables belong to the same family of distributions
with parameterθ.

The term “site” is used to refer a sampling location
that has a distinct predictive variable value. Depending
on the scale of the study, a site can be a 1 m× 1 m
sampling grid as in the Everglades example, or reaches
of streams miles apart.

The random variablesY1, . . . , Yn have a change-
pointr (1 ≤ r ≤ n) if the parameter value changes atr:

Y1, . . . , Yr ∼ π(Yi|θ1)

Yr+1, . . . , Yn ∼ π(Yi|θ2)
(3)

Theoretical background on this type of changepoint
analysis can be found inSmith (1975), Raftery and
Akman (1986), Carlin et al. (1992). Extension to
a multiple changepoint problem can be found in
Stephens (1994). In this paper, we summarize the
results of changepoint analysis presented inSmith
(1975)and use the newly developed Gibbs sampling
procedure for parameter estimation.

In our example, the response variables can be ap-
proximated by a normal distribution or a binomial dis-
tribution (seeSection 3.2). Accordingly, we present
the details of a changepoint problem for normal and
binary response variables.

2.3. Normal distribution model

When the random variablesY1, . . . , Yn are from a
normal distribution family, the changepoint problem
is defined as follows:

Yi ∼
{
N(µ1, σ

2
1), i = 1, . . . , r

N(µ2, σ
2
2), i = r + 1, . . . , n

(4)

Let λ1 = 1/σ2
1 and λ2 = 1/σ2

2. As a result, model
parameters areθ = (µ1, λ1, µ2, λ2). Assume the prior
is of the form

π(θ, r) ∝ π(λ1)π(λ2)

In addition, let the prior distributions ofλ1 andλ2 be
from a gamma distribution family, i.e.λ1 ∼ γ(α′

1, β
′
1)

andλ2 ∼ γ(α′
2, β

′
2). The proper prior distributions for

λ1 andλ2 ensures a proper posterior distribution for
r. In practice, values of the parameters(α′

1, β
′
1) and

(α′
2, β

′
2) can be chosen to make the prior distributions

nearly flat. We used 0.001 for all four parameters.
The joint distribution of data and parameters is pro-

portional to the product of prior and likelihood:
n∏
i=1

π(θ, r)π(Yi|r, θ) ∝ λ
r/2+α′

1−1
1

× e[−(1/2)rλ1(µ1−Ȳ1)
2] e(−λ1δ1)

× λ
(n−r)/2+α′

2−1
2 e[−(1/2)(n−r)λ2(µ2−Ȳ2)

2]

× e(−λ2δ2) (5)
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and the marginal distribution ofr is:

pr(r|Y) ∝


1

r1/2

1

(n− r)1/2

Γ(γ1)

δ
γ1
1

Γ(γ2)

δ
γ2
2

, for r < n

1

n1/2

Γ(γn)

δ
γn
n

Γ(α′
2)

β
′α′

2
2

, for r = n

(6)

where

Ȳ1 = 1

r

r∑
i=1

Yi, Ȳ2 = 1

n− r

n∑
i=r+1

Yi,

γ1 = r − 1

2
+ α′

1, δ1 = 1

2

[
r∑
i=1

Y2
i − rȲ2

1

]
+ β′

1,

γ2 = n− r − 1

2
+ α′

2, δ2 = 1

2


 n∑
i=r+1

Y2
i − (n− r)Ȳ2

2


 + β′

2,

γn = n− 1

2
+ α′

1, δn = 1

2

[
n∑
i=1

Y2
i − nȲ2

1

]
+ β′

1

andΓ(·) represents the Gamma function.
This is a discrete probability distribution. Because

the order of the response variable is the same as the
environmental gradient variable, the probability ofxi
being the threshold is also defined byEq. (6). We
may choose to use the mode of the distribution as the
estimate of the changepoint, or the expected value of
the corresponding environmental gradient variable.

The posterior conditional distributions of parame-
tersθ are:

µ1|µ2, λ1, λ2, r ∼ N(Ȳ1, rλ1),

λ1|µ1, µ2, λ2, r ∼ γ(γ1, δ1),

µ2|µ1, λ1, λ2, r ∼ N(Ȳ2, (n− r)λ1),and

λ2|µ1, µ2, λ1, r ∼ γ(γ2, δ2)

2.4. Binomial distribution model

When the random variablesY1, . . . , Yn are from
binomial distributions, the changepoint problem be-
comes

Yi ∼
{

binomial(θ1, Ni), i = 1, . . . , r

binomial(θ2, Ni), i = r + 1, . . . , n
(7)

where θ1 and θ2 are probabilities of success before
and after the change, respectively. Assuming a uniform

prior onr, θ1, andθ2, the joint distribution of data and
parameter is proportional to:

π(θ1, θ2, r)L(Y; θ1, θ2, r) ∝ θ

∑r
i=1 Yi

1

× (1 − θ1)
∑r
i=1(Ni−Yi)θ

∑n
i=r+1 Yi

2

× (1 − θ2)
∑n
i=r+1(Ni−Yi) = θ

S11
1

× (1 − θ1)
S12θ

S21
2 (1 − θ2)

S22 (8)

whereS11 = ∑r
i=1 Yi, S12 = ∑r

i=1(Ni − Yi), S21 =∑n
i=r+1 Yi, andS22 = ∑n

i=r+1(Ni − Yi).
Integrating outθ1 andθ2 from the joint distribution

(8), the posterior marginal distribution ofr is

π(r|Y) ∝
∫
θ
S11
1 (1 − θ1)

S12θ
S21
2 (1 − θ2)

S22 dθ1 dθ2

∝ Γ(S11+1)Γ(S12+1)

Γ(S11+S12 + 2)

Γ(S21+1)Γ(S22 + 1)

Γ(S21 + S22 + 2)
(9)

The conditional posterior distributions ofθ1 andθ2
are available:

π(θi|r, Y)=beta(Sj1+1, Sj2+1), for j=1,2 (10)

Inference on whether a changepoint exists can be
made by the probability of no changepoint pr(n|Y).

Inference on the posterior distributions ofr, µ1, µ2,

λ1, andλ2 for the normal model, andr, θ1, and θ2
for the binomial model are made by using the Gibbs
sampler, a Markov chain Monte Carlo simulation
(MCMC) method(Gelfand and Smith, 1990; Gelfand
et al., 1990; Smith and Roberts, 1993). Casella and
George (1992)provides an intuitive exposition of
the Gibbs sampler. Examples of environmental ap-
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plication of the Gibbs sample are found in Qian and
Reckhow (1998),Qian and Richardson (1997), and
Qian et al. (2000).

We note that multiple samples from each site can be
(and should be) directly used in both methods’ com-
putation procedures.

For the binomial model, we wrote S-Plus functions
to calculate the changepoint distribution (Eq. (9)) and
to sample the posterior distributions of the parameters
(Eq. (10)). The calculation can be done using any soft-
ware that evaluates aΓ -function and generates ran-
dom samples from a beta distribution. For the normal
model, we used WinBUGS(Spiegelhalter et al., 2000),
a freely available software for Bayesian analysis using
Gibbs sampler.

3. The Everglades example

3.1. Introduction

Numerous studies have shown that the Everglades
is a phosphorus limited ecosystem (e.g.Richardson
et al., 1999; Steward and Ornes, 1975a,b; Swift and
Nicholas, 1987; Flora et al., 1988). One of the most
publicized sources of perturbation to the Everglades
ecosystem has been excessive inputs of phosphorus.
Thus, as part of the 1994 Everglades Forever Act
(EFA, Florida Administrative Code, 17-302.530), the
state of Florida mandated that a numerically defensi-
ble water-column total phosphorus (TP) standard be
established by 2001. Moreover, as a Florida Class III
waterbody, legislation has specifically mandated that
the TP concentration selected as a standard must not
result in an imbalance of flora or fauna.

In accordance with this legislation, a phosphorus
dosing study was established in the Water Conserva-
tion Area-2A (WCA-2A) in the northern Everglades
to experimentally examine changes in biological at-
tributes in response to TP concentrations. Two dos-
ing facilities, each with five walled mesocosms and
one unwalled control, were constructed in adjacent
sloughs in southern part of WCA-2A where anthro-
pogenic impact is negligible. Mesocosms were 2-m
wide and 8-m long flumes, continuously dosed with P
from the north ends. Each walled mesocosm was as-
signed a soluble reactive phosphate (SRP) treatment
in one facility and replicated in the other. These treat-

ments ranged from background concentrations (walled
control) to approximately 125�g/l in the highest treat-
ment. Water-column SRP and TP were measured bi-
weekly throughout the duration of the study at multi-
ple stations down the length of each mesocosm. The
dosing study was inaugurated on 30 November 1992
and terminated on 21 September 1998. Greater detail
of the dosing study experimental design and operation
can be found inRichardson et al. (2000)andPan et al.
(2000).

3.2. Data

While several levels of biological organization were
studied to develop a phosphorus threshold for the Ev-
erglades, here we only consider the relationship be-
tween macroinvertebrate assemblages and TP as a test
for the two statistical methods. Macroinvertebrates are
one of the most widely used biological indicators in
aquatic systems(Rosenberg and Resh, 1993; Barbour
et al., 1999), thus were expected to be useful monitors
of ecological condition in the Everglades. We initiated
the macroinvertebrate component of the phosphorus
dosing study in 1996, 4 years after dosing had begun.
Samples were collected at the 2, 4, and 6-m stations
within each mesocosm (including unwalled control)
on four dates, two wet season (2 September 1996, 21
September 1998) and two dry season (8 January 1997,
4 February 1998). Thus, there were 36 observations
on each date. Greater detail on sampling design and
methods are described elsewhere(Richardson et al.,
2000; King and Richardson, in press).

To assess dose–response relationships between
macroinvertebrate communities and TP, 2 metrics
were calculated using the species abundance data:
(1) Bray–Curtis dissimilarity (BCD) and (2) percent
tolerant individuals.

BCD was selected as a metric because it has been
shown to be one of the most robust and ecologically in-
terpretable measures for species abundance data(Bray
and Curtis, 1957; Faith et al., 1987; Clarke, 1993;
Legendre and Legendre, 1998; Legendre and
Anderson, 1999). Before calculation, a log10(x + 1)
transformation was applied to taxon abundances to
increase the relative contribution of the uncommon
and rare taxa (e.g.Gauch et al., 1982; Efron and
Tibshirani, 1989; Cao et al., 1998). Since BCD is
based on pairwise comparisons between all sample
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pairs, samples were ordinated using nonmetric multi-
dimensional scaling (nMDS), rotated using varimax
rotation to maximize variation along nMDS Axis 1,
and extracted as univariate scores along nMDS Axis 1
(McCune et al., 1997; Legendre and Legendre, 1998).
Because the standardized log-abundance variables
are approximately normal, nMDS Axis 1, a linear
combination of these nearly normal variables, is ap-
proximately normal as well. The objective in the use
of nMDS was to recover a multivariate assemblage
pattern that could potentially be attributed to a gradi-
ent in TP concentration, and to reduce dimensionality
to allow for univariate changepoint analysis.

Percent tolerant individuals was calculated using a
list of taxa shown to be highly abundant in high phos-
phorus, eutrophic areas in the Everglades but uncom-
mon in low phosphorus areas(King, 2001; King and

Table 1
Changepoint estimation results for macroinvertebrate responses in a phosphorus dosing mesocosm in the Everglades

Sample no. TP threshold (�g/l) Intervals

Nonparametric Bayesian Nonparametric Bayesian

Response variable: BCD
1 12.25 (P = 0.00123) 10.23 (P < 0.00001) 10.05, 18.38 10.05, 10.55
2 11.60 (P < 0.00001) 11.81 (P < 0.00001) 11.12, 12.76 11.27, 12.76
3 10.53 (P = 0.00073) 10.68 (P < 0.00001) 10.07, 10.68 10.61, 11.59
4 10.81 (P = 0.00073) 13.94 (P < 0.00001) 8.31, 13.94 10.55, 13.94

Response variable: percent phosphorus tolerant species
1 12.11 (P < 0.00001) 10.54 (P < 0.00001) 10.05, 18.05 10.05, 10.55
2 14.04 (P < 0.00001) 13.47 (P < 0.00001) 11.27, 16.43 12.72, 15.21
3 10.67 (P < 0.00001) 10.68 (P < 0.00001) 9.07, 11.99 10.61, 10.68
4 10.69 (P < 0.00001) 11.80 (P < 0.00001) 7.12, 14.40 8.31, 12.38

Table 2
Mean response variable values

Sample no. BCD (left) BCD (right)

Nonparametric Bayesian Nonparametric Bayesian

Response variable: BCD
1 −0.80± 0.33 −0.82± 0.36 0.35± 0.63 0.34± 0.66
2 −0.95± 0.41 −0.92± 0.48 0.48± 0.40 0.49± 0.41
3 −0.76± 0.74 −0.74± 0.78 0.55± 0.44 0.56± 0.45
4 −0.65± 0.71 −0.53± 0.74 0.46± 0.42 0.52± 0.41

Response variable: percent phosphorus tolerant species
1 0.044± 0.032 0.041± 0.008 0.231± 0.109 0.221± 0.012
2 0.070± 0.041 0.071± 0.013 0.224± 0.086 0.216± 0.015
3 0.026± 0.027 0.033± 0.007 0.182± 0.147 0.178± 0.011
4 0.056± 0.043 0.079± 0.016 0.194± 0.096 0.197± 0.017

Richardson, in press). This metric was recorded in
the form of two counts: number of tolerant species
and total number of individuals. Because the nature
of the data is binary (a subject is either phospho-
rus tolerant, success, or non-tolerant, failure) and we
are interested in the proportion of tolerant species (or
the probability of success), a binomial distribution is
appropriate.

In accordance with the Everglades Forever Act
(Florida Administrative Code 17-373.4592), long-
term geometric mean values of TP were used as
predictors in this analysis. We define the “long-term”
as the approximate life span of most long-lived taxa
present at the dosing study, which is about 6 months.
Each geometric mean corresponded to the precise
location of each macroinvertebrate sample collected
from the mesocosms.
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Fig. 1. Changepoint distributions estimated for BCD using the nonparametric (dashed lines) and the Bayesian (the solid lines) methods.
Data are shown as shaded dots.

Fig. 2. Changepoint distributions estimated for percent phosphorus tolerant species using the nonparametric (dashed lines) and the Bayesian
(the solid lines) methods. Data are shown as shaded dots.
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3.3. Results

For each of the four sampling events, we present
the changepoint estimated using both the nonparamet-
ric and the Bayesian methods (Table 1), as well as the
estimated mean and standard deviation of the BCD
and percent phosphorus tolerant species on both sides
of the changepoint (Table 2). Uncertainty in the es-
timated changepoint are presented by using (1) the
range of the middle 90% of the 1000 bootstrap simu-
lation replicates, and (2) the 90% credible intervals for
the Bayesian estimates (under the columnIntervals in
Table 1). The values ofP under the twoTP threshold
columns inTable 1are theP-value for testing whether
a changepoint exists estimated based on the approxi-
mateχ2 test discussed in the method section for the
nonparametric method, and is the probability of no
changepoint, pr(n|Y), for the Bayesian method.

Figs. 1 and 2present the threshold distributions
along with the BCD and percent tolerant species data,
respectively, for all four sampling events. In the fig-
ures, the bootstrap simulation results for the nonpara-
metric method were shown by the dashed lines (the es-
timated probability density function of the 1000 boot-
strap simulation replicates); the Bayesian method re-
sults are shown by the vertical lines with the height
representing the probability of the corresponding TP
value being the threshold; the shaded circles are the
data used for the analysis.

The results from the nonparametric method are
comparable to those of the Bayesian method. This is
expected since the probability distribution assump-
tions (normal and binomial) made on the response
variables under the Bayesian method are appropriate.
Because the Bayesian method uses the distributional
information, it resulted in narrower 90% intervals for
the changepoint. When the proper response variable
probability distribution cannot be ascertained, the
nonparametric method should be used.

4. Discussions

We presented two statistical methods for quantify-
ing environmental thresholds using data from an ex-
periment conducted in the Everglades as an example.
Both methods are designed specifically for the de-
tection of change in the selected ecological response

along a gradient. The nonparametric method does not
make probabilistic assumptions about the response
data; it is therefore more robust. Computation of the
nonparametric method is straightforward and can be
done without special software. However, it is neces-
sary to identify the type of response data (e.g. contin-
uous, counts, or categorical) in order to calculate the
deviance properly. Because the nonparametric method
does not make use of information about the proba-
bilistic distribution of the response variable, it is less
efficient than the Bayesian method when such infor-
mation exist. The Bayesian method requires specific
information on the distribution of the response vari-
able. This information is, however, readily available
for most ecological data, either from past experience
(e.g. log-normal is a good approximation for concen-
tration variables), or the nature of data (e.g. binomial
distribution is appropriate for binary response vari-
ables and Poisson distribution is often used for counts
data). Computation of the Bayesian method is more
intense and complicated than the computation of the
nonparametric method. If only the changepoint is of
interest, any software that is capable of evaluating the
Gamma function is sufficient (Eqs. (6) and (9)). We
recommend that both methods be used in order to fully
explore all possible outcomes.

From the probability density (or distribution) func-
tions (Figs. 1 and 2) one can determine the most likely
threshold values and their uncertainty. From a risk as-
sessment view point, a cumulative density or distribu-
tion function (CDF) can then be used to directly read
out the probability of exceeding the threshold (Fig. 3).
The CDFs for the percent tolerant species presents the
risk exceeding the threshold at various TP concentra-
tions.

It is more often the case that a threshold is not well
defined. As a result, the change in the selected re-
sponse variable may be gradual. If the data cover the
change well, i.e. there are enough data points to de-
scribed both before and after the change, our methods
will work well, resulting in a flatter changepoint dis-
tribution.

The EFA requires the TP threshold to be set to pre-
vent flora and fauna imbalance. However, there was
no definition about what constitutes an imbalance. In
the example, we selected the percent phosphorus tol-
erant macroinvertebrate species and the Bray–Curtis
dissimilarity index as the response variables. A change
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Fig. 3. Cumulative changepoint distributions estimated for percent phosphorus tolerant species using the nonparametric (dashed lines) and
the Bayesian (the solid lines) methods, indicating the risk of exceeding the TP threshold.

in the two response variables we used only repre-
sents an “imbalance” in the macroinvertebrate com-
position metrics we tested, which may or may not be
the same imbalance as defined in the EFA. The re-
sults presented inTable 1 indicated a TP threshold
value of slightly above 11�g/l. Separately using data
from the same mesocosm experiment, we estimated
the TP threshold values using additional variables rep-
resenting various ecological trophic levels. We found
that, in general, the TP thresholds were different for
response variables representing different trophic lev-
els or the community level, which indicates that an
environmental threshold estimated using our meth-
ods should not be isolated from the intended response
variable.

Dimension reduction is a common practice in quan-
titative ecology(Legendre and Legendre, 1998). In
our case, we used Bray–Curtis dissimilarity index and
percent tolerant individuals. Reducing the dimension
of the data will inevitably lead to loss of information.
Therefore, using the full species composition is advis-
able. We will report our work on using species com-
position data for estimating threshold in a separate

paper(Qian et al., 2003). In the mean time, we sug-
gest that multiple metrics (e.g. abundance, number of
taxa) be used for estimating the same threshold to bet-
ter understand what aspect of the ecosystem changes
at which TP concentration. For the same reason, the
definite total phosphorus threshold for the Everglades
ecosystem should be estimated using response vari-
ables from multiple trophic levels.

Three most commonly seen types of data are: (1)
continuous data whose distribution can be approxi-
mated by a normal distribution, (2) counts data that can
be approximated by a Poisson distribution, and (3) bi-
nomial or multinomial data (e.g. presence/absence of a
particular species and counts of several species found
in a site). Both the nonparametric and the Bayesian
methods can be applied to all three types of data. We
presented the normal and binomial response variable
cases in the Everglades example. When the response
variable is counts, a log transformation should be per-
formed before applying the nonparametric method.
The Bayesian changepoint method for counts data can
be found inRaftery and Akman (1986). The appli-
cation of Bayesian hierarchical modeling approach to
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multinomial or categorical data can be found inQian
et al. (2003).

Because TP is the limiting nutrient in the Everglades
ecosystem, it is expected that the ecosystem will re-
spond to the elevated TP concentration. Because BCD
summarizes the community pattern of the macroinver-
tebrate assemblage data, the variable is a ranking of
some sort. A clear and well-defined changepoint along
the TP gradient (Figs. 1 and 2andTable 2) indicates
the existence of a TP threshold and supports the the-
ory of a phosphorus assimilative capacity for wetlands
as proposed byRichardson and Qian (1999).
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