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CHAPTER ONE 
 

Introduction 
 
 

The hardware implementation of algorithms can be a difficult process.  An 

algorithm takes a given input and produces an output based on several calculations.  

Unlike state machines, an input can only produce one output, and a design could be 

implemented as purely combinational logic.  This, however, would be very complex and 

likely have several timing issues.  It is much more effective and organized to divide an 

algorithm into several clocked segments.   This way, the correct data will arrive at 

components at the proper time and the arrival of a valid output is highly predictable.  

Algorithms also tend to be too large for every calculation to be performed by 

different hardware components.  Implementation of large algorithms requires that many 

components be reused during computation and therefore some method of control.  State 

machines are not required; usually a simple series of counters is sufficient. 

The example presented is of neural network inversion.  This thesis begins with a 

brief introduction to the hardware and programming environment.  Chapter three 

introduces the algorithm being implemented as well as the problem background.  

Chapters four, five and six describe implementations of the three inversion sub-

algorithms as well as the adaptations required for hardware.  The final chapter explains 

how hardware implementations are in effective decreasing algorithm computation time.  

The appendices present the code for the final implementation of hardware neural network 

inversion. 
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CHAPTER TWO 
 

The SRC-6e Reconfigurable Computer
 
 

 The SRC-6e Reconfigurable Computer, from here on referred to as the SRC-6e, is 

a specialized system designed for the implementation of code in reconfigurable hardware.  

The system contains two reconfigurable chips accessible by core processors.  The chips 

are programmed using languages tailored specifically for the system.   

The SRC-6e has previously been used for applications by the Naval Postgraduate 

School in implementing CORDIC functions [1, 2], certain RADAR applications [3], as 

well as with Triple DES [4].  A group in Washington, D.C. used the SRC-6e for work 

with cryptosystems [5]. 

 
Hardware Architecture 

 
The SRC-6e contains two Pentium 3 microprocessors running at one gigahertz 

and two Xilinx XC2V6000 field programmable gate arrays(FPGA) running at one 

hundred megahertz.  The XC2V6000 contains pre-configured logic blocks in order to 

simplify the implementation of some designs.  Each XC2V6000 contains 144 eighteen-bit 

multiplier blocks and 144 eighteen-kilobit random memory access blocks.  In addition to 

pre-defined logic, each chip has approximately six million user-definable logic gates [6]. 

In order for the hardware to be useful, it must be able to read and write to memory 

used by the main processors.  For this purpose, there are six on-board memory blocks.  

Each block contains four megabytes of memory, accessible by either FPGA.  The 

processors can access this memory through an on-board controller.  The controller can 
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move data between the on-board memory and the common, processor accessible 

memory.  In a typical program, the processor instructs the controller to load data to be 

manipulated or analyzed; this data is then loaded into the on-board memory where it is 

accessed by the reconfigurable hardware.  Once computations are complete, the results 

are stored in on-board memory and the controller transfers them back to common 

memory for use by the microprocessors.  A block diagram of the SRC-6e is shown in 

Figure 1. 

 
 

 
 

Figure 1:  The SRC-6e Block Diagram.  The SRC-6e contains two Pentium 3 
microprocessors and two Xilinx XC2V6000 FPGAs [7]. 

 
 

If both available FPGAs are utilized, they are arranged in a master-slave 

relationship, with one FPGA controlling the other.  The master FPGA permits the slave 

access to read and write to specific memory blocks and controls when the slave begins 

calculations.  Along with the memory blocks, the master and slave can communicate 
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directly through three sixty-four bit ports.  Once both FPGAs have completed 

calculations, the master regains control of all six memory blocks and the controller copies 

the results to common memory [7]. 

 
SRC-6e Development Environment 

 
The SRC-6e has its own development environment and uses several programming 

languages for design implementation.  The SRC-6e runs a Linux operating system and is 

controlled remotely via x-windows or a command line interface.  At the highest level of 

an implementation, the main program is written in the standard C language and executes 

on the Intel processors.  The main program executes as with any other platform, and the 

command line and console can be used for user input or data display.  From the main 

program, the reconfigurable hardware is accessed in the same manner as a function.  The 

hardware function handles the necessary data transfers and execution on the hardware.   

The hardware functionality is programmed in a modified C or FORTRAN, which 

is translated by the SRC-6e compiler into Verilog code, which is then synthesized and 

encoded into FPGA bit streams using standard FPGA design tools.  The hardware 

generation process is hidden from the programmer who simply issues a make command 

to generate the compiled and synthesized program.   

The high level languages can be used exclusively by themselves or along with 

functions written in one of two standard hardware description languages, VHDL or 

Verilog.  Hardware description languages are used when more control is desired over the 

FPGA circuitry.  The design for the example used in this thesis was coded using a 

combination of C and VHDL.  It is also possible to use intellectual property cores in a 

design.  The core can be called from the VHDL or Verilog code and the precompiled core 
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file uploaded to the SRC-6e.  The compiler will properly connect the design.  This 

method is used for the division operation shown in the CORDIC portion of the example. 

 
Hardware Description Language Implementation 

 
 Hardware description languages are especially useful to gain more control of 

parallel processes as well as to circumvent some of the idiosyncrasies of the higher level 

programming languages.  For example, the compiler will often add latency to loops 

during compilation for implementation.  This can be difficult to fix in the higher level 

languages, though the solution may be quite obvious at the hardware description level.  

One particularly frustrating peculiarity is the implementation of multipliers.  For all 

multiply commands, the complier requires three multipliers to be used, though typically 

one is sufficient. The compiler’s multipliers also are intended for integers.  For a fixed 

point design, the decimal point must be moved after every multiply.  This is much easier 

to implement at the hardware description level.   

To use hardware description languages, a module is written in either VHDL or 

Verilog and then is called as a function from the C or FORTRAN hardware code.  In 

order for the complier to know how the higher level programming languages will 

communicate with the function, two additional files must be created.  In the files, the 

function inputs and outputs are listed along with their order and sizes as well as the nature 

of the function.  The compiler needs to know when it is able to send inputs and when to 

retrieve outputs.  The programmer must define whether the function is stateful, external, 

pipelined, or periodic as well as its latency as described in the SRC C reference guide. 

 In some instances, such as the following problem presented, some of the high- 

level language idiosyncrasies force much of the logic to be performed in the hardware 
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description languages.  However, the resulting function will not fit into any of the 

predefined function characteristics.  In order to circumvent this problem, the function can 

be defined as functional with a pipelined structure and placed in a loop.  In order for the 

technique to work, the loop must be programmed so that the compiler will not add 

latency.  The latency is assigned as the time from when the last input enters to the time 

the last output calculation is finished.  Then, from the high level language side, if the 

number of inputs differs from the number of outputs, pseudo-inputs can be used to fill the 

extra clocks if there are more outputs than inputs or additional outputs can be ignored if 

the reverse is true.   
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CHAPTER THREE 
 

The Acoustic Algorithm
 

 
Given a set of sonar system parameters and environmental parameters, the 

acoustical state of an underwater environment can be predicted by computationally 

intensive computer models.  It is desirable to be able to perform an inversion on the 

system: given the state of the underwater environment and some fixed parameters, 

determine the other input parameters to achieve optimal sonar performance.  Inversion is 

performed by testing many different sets of the variable input parameters and choosing 

the set that mostly closely matches the desired acoustical state.  In order to perform the 

inversion in real time, the computation time of the model must be small and the number 

of sets of unknown parameters tested kept at a minimum. 

Previous work with the acoustic model has been performed by the University of 

Washington and the Jet Propulsions Laboratory.  Some of their work can be found in [8], 

[9], and [10]. 

 
The Neural Network 

 
In order to decrease the calculation time of the forward computation, an artificial 

neural network was trained using data from the acoustic model.  The network has a 27-

40-50-70-1200 architecture, with the 27 inputs corresponding to the sonar system and 

environmental parameters and the 1200 outputs corresponding to the acoustic state of 

water at points on an 80 by 15 grid [11].  
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The three hidden layer network greatly decreases forward computation time, from 

a few minutes using the acoustic model, to few milliseconds.  Though this speed is 

acceptable for real-time forward calculations, it is too slow to produce a real-time 

inversion.  By using a parallel FPGA implementation, computation time can be decreased 

enough to make real-time inversion possible. 

 
Particle Swarm Optimization 

 
In order to minimize the number of sets of unknown parameters tested, a particle 

swarm optimization is used.  Particle swarm optimization employs several agents 

exploring a multi-dimensional search space to maximize a given fitness function.  As the 

agents traverse the space, they have tendencies to return to their own previous best 

locations as well as to the best location of the group.  The tendency is based on the 

distance from the best locations and some uniform randomness.  The update equations 

are: 

])[(])[(][]1[
][][]1[

2211

0

kXGRCkXPRCkVkV
kVAkXkX
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The next location, X[k+1], and next velocity, V[k+1] of each agent are 

determined using the following: X[k], the current location; V[k], the current velocity; A0, 

an update constant controlling the resolution of movement; C1 and C2, bias coefficients; 

R1 and R2, uniform random variables between 0 and 1; P, the personal best fitness 

location and G, the group best fitness location. 

For the above neural network inversion, the fitness function is defined as the sum 

of the differences in pixels in the calculated acoustical state and the desired state.  A 

smaller sum is considered to have a higher fitness.  To prove that the inversion method is 
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viable, a known achievable set of outputs is used as the desired state.  If the inputs found 

by the inversion produce approximately the same set of outputs, then the method can be 

used to invert a set of desired outputs that lie outside the achievable set with confidence 

that nearly the closest attainable set is found. 

Certain frequently used limits are also applied to the particle swarm.  Velocity is 

limited to help keep particles from jumping over minimums in thin valleys.  The range is 

also limited to keep particles from using search time to look in unrealistic areas. 
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CHAPTER FOUR 
 

Neural Network Accuracy and Sigmoid Implementation
 

 
For this inversion implementation, the master-slave relationship is used between 

the two FPGAs with the particle swarm optimization acting as master and the neural 

network fitness function acting as slave.  The neural network was implemented first in 

order to prove feasibility of the design. 

Typically, when a neural network is implemented on an FPGA, it is trained for 

specifically for that purpose, using powers of two weights and a lookup table or other 

specialized activation function [12].  However, our problem involves a computer-trained 

network using continuous weights and a sigmoid activation function.  The problem of 

continuous weights is solved by rounding and using a fixed-point representation and fast 

multipliers built into the FPGA.  This still leaves the problem of the activation function. 

When the activation function is a sigmoid, it can be found using exact methods, 

such as a look up table or a CORDIC function.  Another common method is to use a 

simple piece-wise linear approximation [13].   However, each of these methods has 

undesirable aspects.  In order to keep the entire network internal to one chip, a lookup 

table is undesirable.  A CORDIC function gains accuracy at the cost of latency.  The 

piece-wise linear method, while small and quick, has limited accuracy.  Our problem 

requires a quick, smooth activation function approximation that can approximate a 

sigmoid to arbitrary accuracy. 

A Pentium 4 running at 1.8 gigahertz can theoretically perform the forward 

calculation in .116 milliseconds if it performed one calculation per clock.  However, due 
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to memory access time and a non-dedicated processor, the actual forward calculation 

time is .28 milliseconds.  The FPGA implementation can execute the forward calculation 

in under 1500 clocks.  At one hundred megahertz, this translates to less than .015 

milliseconds per forward calculation, a gain of eighteen over the Pentium 4. 

 
From Floating to Fixed Point 

 
In order to conserve chip space and computational intensity, short fixed-point 

representations of numbers are desired. In the aforementioned neural network, all internal 

calculations are of the same order of magnitude, lending the solution to a fixed-point 

representation.  The inputs and outputs are a few orders of magnitude greater than the 

network calculations.  However, they are consistent among themselves and can also be 

stored in a fixed-point representation.  The corresponding input and output weights can 

be scaled to account for the difference, so that all layer calculations appear to be of the 

same order of magnitude.   

To define the representation, two parameters must be specified, the length of the 

integer bits and the length of the fractional bits.  Based on computer simulations, the 

sigmoid input range is from negative fifty to eighty-five.  This range requires a minimum 

of eight bits, one sign bit and seven magnitude bits.  Also based on computer simulations, 

an accuracy of at least 1/128th, or seven fractional bits, is desirable.  

Results of the computer simulations are shown in Figure 2 through Figure 4.  

While all other calculations were performed at maximum accuracy, the bit accuracy of 

the output of the squash was varied.  The result for one case is shown in Figure 2.  Figure 

3 shows the result of changing the bit accuracy of weights while performing all other 
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calculations at maximum accuracy.  A chart of the average pixel error for one hundred 

different cases is shown Figure 4. 

The FPGAs use six sixty-four bit busses to access the on-board memory.  The 

sixty-four bits can be easily divided into two thirty-two bit numbers or four sixteen bit 

numbers.  The XC2V6000 uses eighteen-bit multipliers, which makes the sixteen-bit 

representation desirable.  Sixteen bits is sufficient according to the accuracy calculations, 

allowing a representation with one sign bit, seven integer bits, and eight fractional bits.  

Computer simulations showed that this representation averages .866 units of error per 

pixel.  Since pixels are on the order of magnitude of hundreds, the error is typically less 

than one percent. 

 
 

 
 

Figure 2:  Accuracy Sweep of Squashing Function.  Using one of the sonar problem’s 
inputs, the image map output was calculated using an ANN with a squashing function 
rounded to various levels of accuracy.  The input and weights maintained complete 
accuracy.  The difference from maximum accuracy is shown under each image.  From 
left to right, the four outputs use sixteen, eight, six and four fractional bits for the squash 
output. 
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Figure 3: Accuracy Sweep of Weights.  Using one of the sonar problem’s inputs, the 
image map output was calculated using an ANN with weights rounded to various levels 
of accuracy.  The input and squashing function maintained complete accuracy.  The 
difference from maximum accuracy is shown under each image.  From left to right, the 
four outputs use sixteen, eight, six and four fractional bits for weights. 

 
 

 

Figure 4: Accuracy Sweep of all Fractional Bits. Using one hundred sets of inputs, the 
average error per pixel was calculated using an ANN with all numbers rounded to various 
levels of bit accuracy.  As expected, the error decreases logarithmically as the number of 
fractional bits increases. 
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The Sigmoid Approximation 
 

The familiar sigmoid – or logistic function - version of the squashing function is 

1( )
1 xy x

e−=
+

 

Detailed evaluation of the sigmoid, however, is computationally intensive on an FPGA.  

The sigmoid is used 160 times per neural network evaluation.  Therefore, in order to 

implement the network on an FPGA, a small, quick, and accurate sigmoid approximation 

is desired.   

 
Look Up Table Implementation 

 
The simplest implementation method is to use a lookup table.  In order in to make 

a lookup table, a limited operating range must be determined.  Using the nearly odd 

property,  

)(1)( xfxf −=− , 

of the squashing function, the size of the lookup table can be decreased to half the desired 

range.  The non-saturation range is between -8 and 8, so the look-up table only needs 

operate between 0 and 8.  This requires three integer bits and all eight fractional bits to be 

used as address bits.  Any numbers not in that range are considered to be in saturation and 

assigned an output value of 1.  The resulting table has eleven address bits selecting the 

eight bit fractional portion, using two kilobytes of memory.  The lookup table 

implementation of a sigmoid has a latency of three.  This implementation could be 

undesirable since available on-chip memory may be needed for weight storage. 
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Figure 5:  The Block Diagram for a Lookup Table Implementation of the Sigmoid. 

 
 
Shift-add Implementation 
 

One common implementation is to use a piecewise linear approximation with 

many segments of  

bmxy +=  

If the segments are chosen wisely, the sigmoid can be calculated using only bit shifts and 

additions [13].  However, this method has a limited accuracy, with no possibility for 

improvement.  At its worst, the approximation is nearly .025 off the actual value of the 

sigmoid.   

Another problem is also present; the piecewise linear approximation is not very 

smooth.  In computer simulations, a network work using a full accuracy sigmoid was 

trained using elliptical data.  Then the sigmoid was replaced by the shift-add 

approximation.  The results are shown in Figure 9.  The piecewise approximation results 

in an undesirable piecewise approximation of the output.  Further examination shows that 



 16 

 

training with the shift-add approach also results in piecewise outputs.  The shift-add 

implementation of the sigmoid has a latency of five.   

 

 
 

Figure 6:  The Block Diagram for a Shift-Add Implementation of the Sigmoid. 

 
 

TABLE 1 
 

 SEGMENTS USED FOR THE SHIFT AND ADD APROXIMATION 
 

Lower Bound Slope Constant 
7.236 0 1.0 
5.846 1/512 0.984375 
5.147 1/256 0.97265625 
4.442 1/128 0.953125 
3.724 1/64 0.91796875 
2.977 1/32 0.859375 
2.164 1/16 0.765625 
1.065 1/8 0.6328125 
0.0 1/4 0.5 
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Figure 7: VHDL Approximation of Shift and Add Squashing Function.  The VHDL 
implementation of the shift-add squash is on the left and the error is shown on the right.  
The shift and add approximation of the sigmoid is nearly 3% off from the actual at its 
worst. 

 
 
 
 
 
 

 

  
 

Figure 8: Comparison of Shift-Add FPGA Output with Real Output. One of the known 
input/output relationships was used to test the FPGA implementation.  The map on the 
left shows a comparison of the real image and that produced by the FPGA.  The absolute 
difference of the two images is shown in the map on the right. 
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Figure 9:  A Piecewise Linear Approximation of the Sigmoid.  A piecewise linear 
approximation of the sigmoid results in a piece of approximation of the original outputs. 

 
 
CORDIC Implementation 
 

A third method to approximate a sigmoid is to use a CORDIC algorithm [14] to 

calculate the hyperbolic sine and cosine in order to obtain the hyperbolic tangent. The 

tangent can then be used in the sigmoid equivalent 

2
1

2
tanh

2
1)( +=

xxy  

The CORDIC algorithm works by rotating a vector by known angles until the sum 

of the angles is equivalent to the desired angle.  CORDIC uses the properties that  
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With a small amount of algebra: 
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))sinh()tanh())(cosh(cosh()cosh( ababba ±=±  

))cosh()tanh())(sinh(cosh()sinh( ababba ±=±  

By starting with the hyperbolic sine and cosine of known angle a, a desired 

hyperbolic sine and cosine can be calculated by applying the above equations with known 

b and previously calculated cosh(b) and tanh(b). The equations can be applied repeatedly 

with other known b’s until the proper sum is reached. 

By choosing tanh(b) to be negative powers of 2, such as 1/2, 1/4, 1/8, etc., all the 

multiplications can be executed as shifts.  The cosh(b) can be found for each of the 

previous.  The product of the cosh(b) from all iterations is found and used as an initial 

constant. 

The most commonly used initial argument is zero, with the starting vector as 

(1.20744 0).  However, the range of the CORDIC algorithm starting at this vector is 

limited to the sums of the known b’s.  When using tanh(b) as only powers of 2, the radius 

of convergence is slightly greater than 1.13. 

This creates a problem with the sigmoid implementation.  Using the almost odd 

property, the desired sigmoid range is from zero to eight.  Though since the argument is 

divided by two, the necessary range of the hyperbolic tangent is zero to four, which is out 

of the convergence range.   

In order to get the necessary range to converge, the desired range is divided into 

segments the same size as the standard range.  In this case, two segments were used, zero 

to two and two to four.  Then, when a tangent needs to be found, the initial vector is 
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chosen based on the argument.  If it the argument is in the first segment, the initial vector 

is chosen to be the hyperbolic cosine and sine of one multiplied by the product of the 

cosh(b) and the cosh(1).  For the second segment, the hyperbolic cosine and sine of three 

is used along with the product of the cosh(b) and cosh(3).  This way, the regions of 

convergence for the two segments overlap slightly and also extend beyond the desired 

range.  If more range is necessary, more segments can be used.  If a more accurate result 

is desired, more CORDIC rotations can be used. 

Once the hyperbolic cosine and sine are found, tangent is found by division.  A 

standard Xilinx core is used for division.  Once the tangent is found, a shift of one bit is 

used to divide by two and one half is added to the result.   

The eleven stage CORDIC algorithm and divide implementation fits into a 

pipeline that has a latency of 50.  

 

 
 

Figure 10: VHDL Approximation of CORDIC Squashing Function.  The VHDL 
implementation of the CORDIC squash is on the left and the error is shown on the right.  
The approximation of the sigmoid remains within .005 for the entire range. 
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TABLE 2 

 

CORDIC INITIALIZING SEGMENTS 

 
Segment Center Hyperbolic Cosine Hyperbolic Sine 
1 1.89325 1.419043 
3 12.1566 12.09648 

 

 
 
 

 
 

Figure 11:  The Block Diagram for a CORDIC Implementation of the Sigmoid. 
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Figure 12:  Comparison of CORDIC FPGA Output and Real Output.  One of the known 
input/output relationships was used to test the FPGA implementation.  The map on the 
left shows a comparison of the real image and that produced by the FPGA.  The absolute 
difference of the two images is shown in the map on the right. 

 
 
Taylor Segments Approximation 
 

The fourth approximation examined was a Taylor series about zero, though 

convergence was slow.  To avoid this problem, several second order segments of Taylor 

series about different points are used, with a general formula of 

000
2

00 )(')(")( yxxyxxyxy +−∗+−∗−=  

Then, given the argument, the proper offset and coefficients are chosen.  The accuracy of 

the approximation can be improved by increasing the number of segments used in the 

approximation.  This implementation uses three multipliers, three adders, three 

multiplexers, and a number of comparators equivalent to the number of segments. 

As with the other implementations, a pipelined version is desired.  The pipeline is 

shown in Figure 13.  It was expected that the pipeline would have a latency of eight.  

However, for multipliers on the XC2V6000 to operate at 100 MHz, a latency of two is 

required to complete a computation.  Since there are two stages of multipliers, the total 

latency is ten. 
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TABLE 3:   

 

TAYLOR SERIES SEGMENTS AND COEFFICIENTS 

 
Lower Bound x0 y0” y0’ y0 
7.293 0.0 0.0 0.0 1.000000000000
4.771 6 0.001220703125 0.00244140625000 0.997558593750
3.317 4 0.008544921875 0.01757812500000 0.982055664063
2.482 2.75 0.024780273438 0.05639648437500 0.939941406250
0.425 1 0.045288085938 0.19653320312500 0.731079101563
0.0 0 -- 0.25000000000000 0.500000000000

 
 
 
 

 
 

Figure 13:  The Block Diagram for a Taylor Series Implementation of the Sigmoid. 
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Figure 14: VHDL Approximation.  The VHDL implementation of the Taylor series 
squash is on the left and the error is shown on the right.  The approximation of the 
sigmoid remains within .005 for the entire range. 

 
 

 
 

Figure 15: Comparison of FPGA Output with Real Output.  One of the known 
input/output relationships was used to test the FPGA implementation.  The image map on 
the left was produced by the FPGA and the image map on the right was produced by the 
original neural network. 

 
 

Comparison Summary 
 

Table 4 is a comparison of the different implementations, showing the amount of 

chip assets necessary, latency and error for each implementation.  The average pixel error 

was found using a computer simulation holding all other calculations at maximum 

accuracy and using the approximation in place of the sigmoid.   
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TABLE 4  

 

A COMPARISON OF APPROXIMATIONS 

 
Implementation Slices Memory Multipliers Latency Average Pixel Error 

Lookup Table 1951 2kbytes 0  3 0.4015 
Shift-add 2026 0 0  5 1.3281 
CORDIC 3475 0 0 50 0.4279 
Taylor Series 2085 0 3 10 0.4306 

 

For our problem, fast weight access requires storage in on-chip memory and 

multipliers also limit the amount of memory available.  This makes memory limited and 

the lookup table approach infeasible.  However, given a smaller network or more 

resources, a lookup table implementation would be ideal. 

The shift and add implementation is small with a low latency and uses no 

predefined logic for its implementation.  However, it has the worst error, three times that 

of any other implementation. It also has no method for improvement. 

The CORDIC version has the lowest error, though is significantly larger than the 

other four versions.  This version also has a very long latency, which, in a four layer 

network, would add 200 clock cycles versus the next slowest 40.  However, error 

improvement is easily done by adding more stages and can be done as long as chip area is 

available. 

The Taylor series approximation has the third best error of four implementations, 

though is not much worse than the smallest error.  The small improvement in latency that 

would be gained by using the shift-add implementation is outweighed by the increase in 

error and the cost of a piece-wise approximation.  The desire for speed also outweighs the 

small error improvement that would be gained by switching to a CORDIC 
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implementation.  In the end, we are proceeding with this network implementation using a 

Taylor series approximation.  The actual average error resulting from the Taylor series 

implementation in hardware is 1.4230 units per pixel. 



 

27 

CHAPTER FIVE 
 

Neural Network Implementations
 
 
 For this problem, several different implementation structures were used.  Initially 

a simple design was used to test the ability of the FPGA to calculate the neural network 

as well as to become comfortable with the programming environment.  Next, a few 

similar versions of the initial design were implemented in order to increase the speed of 

the forward computation.  Finally, a completely different approach was taken to achieve 

the current speed up.  

 
Serial Implementation 

 
 The first implementation performed all network calculations serially.  Three on-

board memory banks were used.  One of the memory banks held the network weights 

with one weight per memory location.  Since the inputs for the next layer are written 

while the current layer inputs are being read, two banks must be used to hold layer inputs.  

One multiplier and one accumulator are used to calculate the sum of products input to a 

node.  The inputs from one bank and the weights are used as the inputs to the multiplier.  

The products are then summed by the accumulator until a node sum is completed.  Then 

the result of the node is squashed and the result stored in the other input bank.  While 

result is being squashed, the accumulator is cleared and the calculations for the next node 

begin.  Once a layer is complete, the newly calculated input bank is used for the 

multiplier inputs while the other input bank is written over for the next layer’s inputs.  
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For the final layer, the squash is bypassed and outputs are taken directly from the 

accumulator.  A block diagram for the serial implementation is shown in Figure 16. 

 Since the serial implementation can perform one input-weight multiply per clock, 

the number of clocks required is equivalent the number of weights plus the latency of the 

squashing implementation.  Since the number of weights is much greater than the latency, 

calculation time can be considered to be approximately the number of weights.  The 

acoustic network contains approximately ninety-two thousand weights.  This takes 

approximately ninety-two thousand clocks for a forward evaluation or, at one hundred 

megahertz, just under one millisecond. 
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Figure 16:  The Block Diagram for the Serial Implementation of a Neural Network 

 
 

Parallel Node Implementation 
 

 One method to speed up the implementation is to calculate more than one node at 

a time.  The structure for each node is identical to the serial implementation.  However, 

several nodes for the next layer are calculated in parallel, decreasing computation time. 
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 In order to calculate multiple nodes in parallel, several weights must be accessed 

at the same time.  For the initial node parallel implementation, four nodes are calculated 

at a time, requiring four weights per clock.  To do this, four sixteen-bit weights are stored 

in the sixty-four bit memory in the on board banks.  Then, on each clock, four multiply 

and accumulators multiply an input by four different weights and find the sum of 

products for four nodes.  As with the serial version, two banks are used for reading and 

writing inputs, and the accumulators are cleared when the calculations for new nodes 

began.   

 For the four node parallel version, it would seem that four squashing functions 

would be needed.  However, the since inputs are retrieved at a rate of one per clock from 

the memory banks, they must also be written to at a rate of one per clock.  To achieve 

this, while one node-sum begins a squash, the other three are stored in registers.  Since 

the squashing function is pipelined, the other three are squashed in order, directly 

following the first.  This allows the four node outputs to leave the pipeline serially where 

they are written directly to an input bank. 

 At most, this method could speed up the forward computation time of a neural 

network by a factor of four.  However, not all layers have node multiples of four, so a 

few of the parallel node calculations are wasted calculating nonexistent nodes.  The 

weights for the nonexistent nodes are filled with zeros.  For the approximately ninety-two 

thousand weight neural network, the time for one forward evaluation at one hundred 

megahertz is roughly .25 milliseconds.  A block diagram for the parallel node 

implementation for four nodes is shown in Figure 17. 
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Figure 17:  The Parallel Node Implementation with Four Parallel Nodes. 

 
 

A variation on this method was also implemented in order to achieve even greater 

speed up.  The SRC-6e has six on-board memory banks.  The input storage requires the 

use of two of the banks, leaving four banks of weight storage.  Since each bank can hold 

four weights per memory location, a maximum of sixteen weights can be retrieved per 

clock cycle.  This limits this implementation a maximum sixteen parallel multiplications. 

If the four node parallel implementation is simply extended out to sixteen, many 

multiplies are wasted.  To calculate a layer of fifty nodes, for example, in the last set of 

sixteen nodes, the final fourteen nodes are unnecessary.  In order to avoid this waste, only 

four nodes are calculated at in parallel; however, four multiplications per node are also 

computed, using all sixteen available weights.  Then the four products are summed and 

stored in an accumulator, allowing nodes to be calculated four times as quickly.  Then the 

number of non-existent node calculations at the end of a layer is equivalent to that of the 

previous implementation. 
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In order to use four weights per node, four inputs must also be used per clock.  

Since sixteen bit inputs are stored in a sixty-four bit bank, four are stored in each memory 

address and are accessible every clock.  Four squashed outputs must also be stored at the 

same time for use as future inputs.   Instead of shifting data into one squashing function, 

four squashing functions are implemented in parallel.  Then after node multiplications 

and accumulations are completed, all four nodes are squashed and the results are 

available at the same time for storage.   

This method is nearly sixteen times faster than the serial implementation.  At one 

hundred megahertz, the time for a forward calculation of the ninety-two thousand weight 

network is approximately sixty microseconds.  A simplified block diagram for the 

implementation with sixteen multiplications in parallel is shown in Figure 18. 
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Figure 18:  Parallel Node Implementation with Sixteen Multiplies 
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Parallel Input Implementation 
 

By storing weights and inputs in on-chip BRAM, many more weights can be 

accessed at a time as well as an entire layer of inputs.   This allows many calculations to 

be performed in parallel, giving a significant speed increase over a serial computer. 

The parallel input implementation performs all the multiplications for the 

calculation of one node at the same time.  The previous layers outputs are multiplied by 

the corresponding weights for the current node.  While the products are being summed, 

the next node’s weights are multiplied by the same set of outputs, creating an efficient 

pipeline.  However, since all the node outputs are required for calculations in the next 

layer, the pipeline must wait several clocks for the previous layer to finish before 

continuing with the next. 

In order to simplify the implementation of the network, all layers are considered 

to be the same size as the largest, in this case, 70 nodes. Weights beyond the range of 

small layers are set to zero.  The number of nodes calculated is controlled in order to 

minimize the amount of filler zero weights used.  A block diagram of the node parallel 

calculation is shown in Figure 19.  Pseudo code for control is shown below: 

Multiply all inputs by all current weights 
Sum all the products 
Squash the sum 
Save the squashed sum in output memory 
Increment weight counter 
Increment output counter 
If output counter equals number of nodes on next layer 
 reset the output counter 
 write output memory over input memory 
 increment layer counter 
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This design takes 1465 clocks to complete one network evaluation or slightly less 

than fifteen microseconds.  This allows the network to be evaluated more than sixty 

thousand times per second. 
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Figure 19:  A Simplified Block Diagram of a Node Parallel Implementation. 

 
 

Conclusions on Neural Network Implementations 
 

This example has shown that a hardware neural network can reasonably 

approximate a continuous neural network using limited accuracy for weights as well as 

an approximation of the squashing function.  However, it must be noted that neural 

networks are approximations of an actual system.  By approximating an approximation, 

needless noise is added.  This problem could be avoided by training on a hardware 

implementation; in other words, set the weights by training with the limited accuracy as 

well as with the approximated squashing function.   

The training could be completed using a random initialization of weights or by 

using the pre-trained network weights as a starting point.  In either case, the squashing 
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function used could be chosen based more on speed of calculation rather than on how 

close the approximation is to the sigmoid.  The shift-add version would probably be used 

due its size and speed.  The shift-add implementation is only capable of piecewise linear 

approximations, though given the size of network, the number of linear segments is likely 

adequate. 

The three different versions of neural networks could be useful in different 

situations.  The serial implementation will fit into a small FPGA with only a few input 

pins for the three memory banks used.  Then a circuit board could be created with a few 

RAM blocks and the FPGA.  Inputs could be retrieved from analog to digital converters 

or other sources and outputs used by a computer or other segments of circuitry. 

The parallel node implementation could be tailored for a problem that needs more 

speed than the serial implementation provides, though still needs a reasonably small 

FPGA.  More connections would have to be made to access the greater number of 

memory banks, though outputs would be available four or sixteen times as quickly with 

four available at a time. 

The parallel input implementation is useful in cases where maximum speed is 

necessary, such as in the real-time particle swarm inversion.  For the forward 

computation, given a chip with enough pins, all inputs could be clocked in at the same 

time and used directly as the first layer inputs.  Outputs, however, are still required to be 

received sequentially, as they are calculated sequentially.   
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CHAPTER SIX 
 

Particle Swarm Implementation
 

 
The particle swarm update equations consist of simple multiplications and 

additions, easily implemented on a XC2V6000.  Setting the bias coefficients to powers of 

two and using shifts in place of multipliers further simplifies the implementation.  The 

computation time for a hardware particle swarm optimization is solely dependent on the 

computation time of the fitness function.  The position and velocity of one agent can be 

updated while the fitness of another agent is being calculated.  Since the fitness function 

takes orders of magnitude longer to calculate, the update hardware will be inactive for a 

large majority of the time. 

The more complicated part of the update equations is the randomness associated 

with the velocity update.  For this implementation, we examined three different methods 

for implementing the randomness.  For comparison, a standard particle swarm was run on 

a conventional computer.  The average error over one hundred trials between desired 

output and that calculated using the found input was 1.9385 units per pixel. 

 
Deterministic Particle Swarm 

 
The first method to implement randomness was simply to ignore it.  Randomness 

was previously successfully removed to prove the stability of the algorithm [15]. 

Removing randomness would simplify the implementation of the particle swarm update 

equations.  In order to estimate the effectiveness, randomness was removed from particle 

swarm on a conventional computer.  The bias coefficients were also decreased so that the 
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average bias would be the same.  Both the random and the deterministic particle swarms 

were run for ten thousand iterations for thirty searches.  The global best fitness was 

plotted for each run as well as the average of all swarms.  The plot is shown in Figure 20.  

For our problem, it initially appeared that including the randomness would significantly 

increase the success of the swarm. 

 
 

 
 

Figure 20:  Particle Swarm with and without Randomness.  Random and deterministic 
particle swarms were run for ten thousand iterations thirty times.  The crosses are the 
global best results from the deterministic particle swarm and the top line the average.  
The circles are the global best results from the particle swarm with randomness and the 
bottom line the average.  The randomness significantly improves the result of particle 
swarm. 

 
 
The deterministic particle swarm update equations lend themselves to a parallel 

hardware implementation since the velocity and position can be calculated at the same 

time.  The update equations are implemented in a pipeline and one dimension can be 

updated on every clock cycle.  The block diagram for the hardware implementation is 
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shown in Figure 21.  The average error over one hundred trials between the desired 

output and that calculated using the found input was 2.3587 units per pixel. 

 

 
 

Figure 21:  Deterministic Particle Swarm Block Diagram. 

 
 

Randomization 
 

In order to implement randomness, a function is implemented that generated two 

pseudorandom numbers per clock.  Two stages are added to the update pipeline to 

multiply the personal bias and global bias by the generated numbers. 

 
Linear Feedback Shift Register 
 

One method of generating pseudorandom numbers is to use a linear feedback shift 

register.  This method is typically used in testing digital logic designs. The Fibonacci 

implementation begins with an initial seed value loaded into a shift register.  The value is 

then shifted one bit with the carry in bit determined by a logical combination of the bits 

in the previous value [16]. 

Prior to implementation, the quality of the randomness of the method was tested 

in computer simulations.  Ideally, the probability of an output of a uniform random would 
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be equal for all values with in the specified range.  Figure 22 shows the histogram of ten 

thousand outputs from an LFSR as well as that of the uniform random number generator 

from a computer simulation.  The LFSR result appears to slightly favor values in the 

extremes, while the computer simulation generator appears to be uniform throughout.  At 

this point, the LFSR appears to be a suitable uniform random number generator. 

The second requirement to be an acceptable uniform random number generator is 

that one output should not be related to other outputs.  A good method to verify this is 

that the frequencies present in a stream of unrelated outputs is uniform.  Figure 23 shows 

the frequencies present in the LFSR and in the computer simulation generator as well as 

short segment of the stream.  As expected, the computer simulation generator has all 

frequencies present at fairly equal strengths.  The LFSR, however, has predominately low 

frequencies, indicating that adjacent outputs are highly related to each other.  This is 

apparent from looking at the output streams.  The computer simulation generator varies 

greatly between samples while the LFSR output follows a curved pattern.  This indicates 

that the linear feedback shift register does not make a very good uniform random number 

generator. 

Even though it is not a perfect random number generator, the linear feedback shift 

register was implemented into the particle swarm.  For sixteen bits of randomness, the 

last sixteen bits are taken from a twenty-one bit LFSR.  The average error over one 

hundred trials between the desired output and that calculated using the found input was 

2.3522 units per pixel. 
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Figure 22:  Histograms for a LFSR Implementation and a Uniform Random Variable. 

 
 
 
 
 
 
 

  
 

Figure 23:  Output Streams and Frequency Spectra f or a LFSR Implementation and a 
Uniform Random Variable. 
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Squared Decimal Implementation 
 

A second method of generating pseudorandom numbers was based on the pi to the 

fifth method.  It is possible to create a stream of apparently random numbers by adding a 

decimal number to pi and then taking the sum to the fifth power.  The fractional portion 

of the result is the pseudorandom number and used as the next number added to pi.  This 

method is not specific to pi or to the fifth power.  The hardware implementation uses a 

squared power and a one followed seventeen randomly assigned fractional bits in place of 

pi. 

As with the linear feedback shift register, the quality of the randomness was tested 

in computer simulations and compared with that of the computer simulation uniform 

random variable generator.  From the histogram shown in Figure 24, the squared decimal 

random generator is not uniform in nature and appears to have a tendency towards 

smaller numbers.  In this aspect, it is worse than the linear feedback shift register 

implementation.  However, in the frequency spectrum shown in Figure 25, the squared 

decimal implementation is more uniform.  This manifests itself in the output stream, 

which contains no obvious patterns.  In this aspect the squared decimal implementation is 

closer to being more random between samples than the LFSR. 

As with the LFSR, the squared decimal implementation was generated in 

hardware and used in the particle swarm search.  The average error over one hundred 

trials between the desired output and that calculated using the found input was 2.3694 

units per pixel. 

 
 

 
 



 41 

 

 
 

 

 
 

Figure 24:  Histograms for a Squared Decimal Implementation and a Uniform Random 
Variable. 

 
 

 
 

 

 
 

Figure 25:  Output Streams and Frequency Spectra f or a Squared Decimal 
Implementation and a Uniform Random Variable. 
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Particle Swarm Randomness Results 
 

When searching for a known achievable set, all three methods of particle swarm 

implementation produced approximately the same levels of output error, making the 

deterministic method most desirable.  In actuality, the deterministic method does 

introduce some randomness due to truncation during the shifting of biases.  It was also 

noted that none of the implementation methods were as accurate as the conventional 

computer average error of 1.9385 units per pixel.   

In order to account for this increase, it was noted that the hardware 

implementation was not searching using an identical network to the computer.  Therefore, 

a more accurate comparison can be made using output from the hardware neural network 

given the found inputs.  Comparing to the hardware output, the average pixel error for the 

deterministic method was 1.8055 units per pixel, actually better than the conventional 

swarm.  The average pixel error of 1.4230 between the computer network outputs and 

hardware network outputs combined with the search error gave rise to the overall higher 

error.   

The average pixel error between the computer network outputs and the acoustic 

model outputs that it is mimicking is 4.5801 units per pixel.  With this level of error 

already in the system, the extra .5 units of error caused by the network and particle swarm 

translation to hardware were deemed to be insignificant. 

 
Conclusions on Particle Swarm Implementation 

 
 The output from the hardware particle swarm inversion has an average pixel 

difference of 2.5387 from a known achievable desired output or an average difference of 
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1.53%.  This low error implies that the particle swarm inversion will be able to find a set 

of inputs that produces outputs closest or near the closest to a desired output set.   

Figure 26 and Figure 27 show two sets of outputs from inputs found for the 

maximization of a specific area as well as the specified area.  All other areas were 

ignored for calculation of fitness.  Localized maximization is equivalent to attempting to 

find infinite ensonification, which, of course, is outside the achievable set.  It is evident 

from the figures that the particle swarm optimization found a set of inputs which 

maximizes the local area and ignores the rest of the figure. 

The time to complete the same one hundred thousand iteration particle swarm 

optimization on a conventional computer is nearly two minutes.  At one hundred 

megahertz, the two-chip hardware implementation takes under 1.8 seconds to complete 

and is approximately sixty-five times faster. 

 

 
 

Figure 26:  Particle Swarm Results Maximizing a Specified Area.  The white area in the 
image on the right shows the desired maximization area.  The image on the left shows the 
outputs from the solution found by the particle swarm. 
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Figure 27:  Particle Swarm Results Maximizing a Specified Area.  The white area in the 
image on the right shows the desired maximization area.  The image on the left shows the 
outputs from the solution found by the particle swarm.
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CHAPTER SEVEN 
 

Algorithm Speedup through FPGA Implementation
 
 

 High-end consumer computers have processors operating at speeds greater 

than three gigahertz and cost less than a few thousand dollars.  FPGAs, however, 

typically run no faster than a few hundred megahertz and can cost several thousand 

dollars per chip.  For certain algorithms the time saved by the ability to perform 

computations in parallel is lost from the slower clock speed of the FPGA.  Other factors 

that determine algorithm calculation time include the ability for an algorithm to be 

pipelined and the speed at which memory can be accessed.   

 
Parallel-able 

 
Algorithms which perform many independent calculations are typically prime 

candidates for FPGA implementation.  The calculations can be performed in parallel by 

the FPGA, whereas in a conventional computer they are performed serially.  The increase 

in algebraic calculations per clock can provide a large speedup over a serial computer 

operating at the same rate.  For the neural network example, many thousands of 

independent calculations are performed, making it a strong candidate for hardware 

implementation.  On the output layer, around seventy thousand multiplications could be 

preformed in parallel, given the appropriate hardware. 

The maximum speedup for an algorithm can be found by dividing the total 

number of computations by the length of the largest dependent set or the largest set of 

computations that cannot be performed in parallel.  Speedup is considered to be the 
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number of clocks required if one calculation is performed at a time divided by the 

number of clocks actually used. 

The largest dependent set in a neural network is directly related to the number of 

layers.  For each layer, a multiply, a sum, and a squash must be performed before 

calculations for the next layer can begin.  A multiplication requires two clock cycles and 

using an ideal lookup table, a squash requires one clock cycle.  Only a limited number of 

terms can be summed in a clock cycle, so the number of clock cycles required is 

logarithmically related to the number of terms in the layer.  For the example neural 

network and hardware, only five terms can be summed per clock to achieve timing.  

Therefore, the sum for each layer takes three clock cycles to complete.  Each layer needs 

six clock cycles to complete, except for the output layer which only needs five.  With 

three hidden layer calculations and one output layer calculation, the longest set of 

dependent calculations is twenty-three.   

The required calculations are approximately ninety thousand multiplies, ninety 

thousand additions, and one hundred and sixty squashes.  This combines for a total 

number of serial clocks of about one hundred eighty thousand.  This results in a 

maximum speed up from parallel-ability of about eight thousand.   

However, the maximum speedup is not possible due to hardware constraints, so 

the real speedup due to parallel-ability is considered to be the total number of calculations 

divided by the longest length of dependent calculations multiplied by the number of times 

the calculations are repeated.  For the first three layers, the longest dependent set is 

twenty-five and this repeated one hundred sixty times.  For the final layer, the longest 
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dependent set is ten and is repeated one thousand two hundred times.  This gives an 

actual speedup due to parallel-ability of about eleven. 

The particle swarm update is an example of another algorithm which can achieve 

speedup through parallel-ability.  With the above example, all twenty-seven dimensions 

could be updated simultaneously.  Internal to each update, an additional speed up of three 

is achievable through performing calculations in parallel.  This gives a total speed up of 

eighty-one. 

The CORDIC algorithm, however, does not achieve much gain from parallel-

ability. The CORDIC rotation calculations are all related and require a serial 

implementation.  With each rotation dependent on the previous, the only parallel gain is 

from the three algebraic computations for a rotation.  The Taylor series and shift-add 

approximations are two other examples in which limited gain is made from parallel-

ability. 

 
Pipeline-able 

 
Even if an algorithm does not have many unrelated calculations, it is still possible 

for an implementation to be advantageous if the algorithm is pipeline-able.  The 

maximum speedup achievable from pipelining is the length of the longest set of 

calculations that cannot be performed in parallel.  The total maximum speedup is the 

speedup from parallel-ability multiplied by the speed up from pipelining.  This gives 

maximum speedup equal to the number of calculations in an algorithm.  

The CORDIC algorithm, for example, is pipeline-able, and this is especially 

useful if many stages of the algorithm are used.  In the pipeline, many calculations are 

performed at the same time; however, each is for a different input.  Then, total speedup is 
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not only the three calculations performed in parallel, but also the length of the pipeline 

used. A ten stage CORDIC algorithm would perform three calculations in parallel 

multiplied by ten stages in the pipeline, or thirty calculations per clock.  This speedup 

makes a one hundred megahertz FPGA competitive with a three gigahertz serial 

computer operating at one calculation per clock.  

This maximum speed up cannot actually be achieved.  However, it is approached 

as the number of the CORDIC computations needed to be performed increases.  If only a 

few computations are required, the full speedup effect is not appreciated due to the extra 

clocks from the latency when waiting for the last computation to be completed.  The real 

amount of speed up is 

⎟
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⎞

⎜
⎝
⎛

−+
=
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Where Sa is the actual speedup, Sm is the maximum speedup, N is the number of 

computations to be performed and L is the latency of the pipeline.  In the pipelined 

CORDIC algorithm, if only one computation is required and the pipeline is ten stages, 

then the actual speedup is only three.  As expected, this is the same as that found when 

examining parallel-ability.   

Some algorithms, such as the neural network, are unable to be fully pipelined due 

to hardware limitations.  Given enough hardware, a neural network would be able to be 

pipelined to perform all multiplications, additions and sigmoid calculations 

simultaneously.  In the case of the example neural network, the gain would be the 

combination of the gains for the multiplications, additions and squashing functions, or for 

a total of around one hundred.   
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However, it is not possible to perform all calculations at one time and hardware 

must be reused, making it impossible to achieve one evaluation per clock.  A pipeline 

gain is still achieved with the calculation of individual nodes.  The squashed sum of each 

node for a layer can be treated as different computations and a pipeline made evaluating 

one node per clock. 

For each layer, the above speed up equation holds with N set to the number of 

nodes and L set to the latency of calculating one node.  The maximum speedup changes 

from layer to layer due to the different number of multiplies between layers as well as the 

latency that is required because one layer must finish before another begins.   The 

average speedup per node due to pipeline-ability is approximately eleven.  The pipeline 

speedup combined with the parallel speedup gives a total speed up of one hundred and 

twenty-one.  This is equivalent to the one hundred and eighty thousand serial clocks 

needed divided by the clocks necessary to complete one forward evaluation. 

 
Memory Transfer 

 
Another important factor in considering the usefulness of an FPGA 

implementation is the memory transfer that occurs.  To use an FPGA algorithm, the 

microprocessors in the SRC-6e must first retrieve data from main memory and then load 

it into the on-board memory banks.  If the algorithm was performed directly in the 

microprocessors, the data is only needed to be retrieved from memory, at which point it 

can remain in cache to be reused.  The extra time of transferring data to and from the on-

board memory banks can make a hardware implementation slower than that in a 

microprocessor. 
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The CORDIC example is one case.  With a ten stage CORDIC pipeline, the 

speedup is thirty.  This makes a one hundred megahertz hardware implementation as fast 

as a three gigahertz serial processor.  However, if data is stored and retrieved in the on-

board memory with a one hundred megahertz processor, an extra two clocks per 

calculation is needed, taking the time per calculation from one clock to three.  This is a 

slowdown by three, making the net speedup only ten.  This makes the CORDIC 

implementation only competitive with a one gigahertz serial computer.   For any fully 

pipelined implementation, the speedup decreases by three. 

The neural network speed is impacted less by data transfer.  This is, however, 

partly due to the large number of clocks used to calculate a forward evaluation.  Only 

twenty-seven inputs are transferred to the on-board memory and twelve hundred outputs 

are transferred out.  This increases the clocks used from 1465 to 2837, or a slowdown of 

about 1.93.  This takes the net speedup from 123 to about 64.   

Particle swarm is hurt the least by data transfer.  It takes about one hundred and 

fifty million clocks to complete.  The only data transferred is the twelve hundred desired 

outputs and the twenty seven found inputs.  This is a slowdown of well under one percent 

and can be considered negligible.   

 
Speed Ratio 

 
In the end, all three of the above factors must be considered when considering 

whether or not to implement an algorithm in hardware.  Typically rough estimates of 

speedups for parallel-ability and pipeline-ability and the slowdown from data transfer are 

accurate enough to determine whether an algorithm will be more efficient in a hardware 

implementation or in a faster dedicated serial processor.  If estimates are not accurate 
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enough to confidently say which will be faster, programming both and comparing actual 

times is probably unnecessary.  Given the choice between a hardware implementation 

and a possibly slightly slower microprocessor program, the extra cost saved by using the 

microprocessor will likely balance any speed gain.  

 
Conclusions 

 
For the neural network implementation, several approximations were made in 

both the data representation and in algorithm calculations in order to accommodate the 

hardware limitations of the FPGA as well as to decrease calculation time.  The error 

added by the translation to a sixteen-bit fixed point representation proved to be 

insignificant.  Error from approximating the squashing function also showed to be 

insignificant.  After examining various implementations, a Taylor Series approximation 

was used for the final network implementation. 

Once approximations were proven to be feasible, various possibilities of network 

implementations were examined.  The parallel input network implementation was able to 

achieve significant speedup through both parallel-ability and pipeline-ability; therefore, 

this implementation was used for the particle swarm inversion.   

The particle swarm inversion was able to achieve speedup through parallel-

ability, since its calculations could be performed during fitness evaluations.  Randomness 

was removed from the particle swarm update equations since it added complexity to the 

implementation and minimal improvement to the results.   The overall speedup of particle 

swarm inversion of neural networks was enough to take the algorithm calculation time 

from several minutes on a conventional computer to less than a few seconds. 



 

52 

 

 

 

 

 

 

 

 

 

 

APPENDICES



53 
 

 

APPENDIX A 
 

Parallel Input Network and Swarm Code 
 
 

Main.c
 

 
#include <sys/types.h> 
#include <stdio.h> 
#include <stdlib.h> 
#include <libmap.h> 
#include <math.h> 
 
void swarm(); 
 
int main() { 
 /*these are all the weights 
 weights are stored in 16 bit fixed point with 4 weights per 64 bit int 
 Fixed point for input layer is one sign bit followed by 15 fractional bits S .XXX 
XXXX XXXX XXXX 
 Fixed point for middle layers is one sign bit followed by 7 integer bits and 8 
fractional bits S XXX XXXX.XXXX XXXX 
 Fixed point for output layers is one sign bit followed by 10 integer bits and 5 
fractional bits S XXX XXXX XXX.X XXXX*/ 
 uint64_t weights[24480] = { 
   0xfae3f80000080891, 
   0x0002ea04fffcff4d, 
   0xff9b06be0a34f634, 
   0xf7f309590b59ff97, 
   0x1918137b0e4b0966, 
   0x0ef20405fdc2f099, 
   0xdff2e041cb566079, 
   0x0000000000000000, 
   0x0000000000000000, 
   0x0000000000000000, 
//not all numbers are shown to reduced code length 
   0xec6cf33bfdb2fe01, 
   0x002a0171fe100143, 
   0xfea904e4006efc26, 
   0x002e008501d70074, 
   0x01f7ff82ffde000f, 
   0xf5b80316d9950000}; 
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 /*This is the maximum limit of search space, 16 bits fixed point 
Sign bit followed by 14 integer bits and 1 fractional bit S XXX XXXX XXXX 
XXX.X*/ 

 uint64_t xMax[27] = { 
      364, 
      350, 
         12514, 
//not all numbers are shown to reduced code length 
     3044, 
     3042}; 
 
 /*This is the minimum limit of search space, 16 bits fixed point 

Sign bit followed by 14 integer bits and 1 fractional bit S XXX XXXX XXXX 
XXX.X*/ 

 uint64_t xMin[27] = { 
       92, 
       92, 
     5152, 
//not all numbers are shown to reduced code length 
     2972, 
     2980}; 
 
 /*This is the maximum velocity of particles, 16 bits fixed point 

Sign bit followed by 14 integer bits and 1 fractional bit S XXX XXXX XXXX 
XXX.X*/ 

    uint64_t vMax[27] = {  
       54, 
       52, 
//not all numbers are shown to reduced code length 
       14, 
       12}; 
 

/*This is the starting locations of 10 search agents. 16 bits fixed point.  Sign bit 
followed by 14 integer bits and 1 fractional bit S XXX XXXX XXXX XXX.X*/ 

 uint64_t psuedorandx[270] = { 
      364, 
      350, 
//not all numbers are shown to reduced code length 
 
            2992, 
            2987}; 
 

/*This is the starting velocities of ten search agents, 16 bits fixed point 
Sign bit followed by 14 integer bits and 1 fractional bit S XXX XXXX XXXX 
XXX.X*/ 

 uint64_t psuedorandv[270] ={ 
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      65534, 
      65534, 
//not all numbers are shown to reduced code length 
      6, 
      65534}; 
 
 /*variable allocation, uses discussed further later*/ 
 uint64_t *WEIGHTS; 
 uint64_t *Agents; 
 uint64_t *limits; 
 uint64_t *desired; 
 uint64_t *bestout; 
 double starttime, endtime, cumetime; //time variables 
 extern double second(); //time variables 
 
 int knownouts[1200]; 
 
 int mapnum = 0; 
 int i,n,j; 
 int x1,y1,x2,y2; 
 int answer; 
 FILE *knownfile; 
 
 //allocate the map 
 map_allocate(1); 
 
 /*make space in memory for variables*/ 
 WEIGHTS = (uint64_t *)Cache_Aligned_Allocate(24480 * 8); 
 Agents  = (uint64_t *)Cache_Aligned_Allocate(272 * 8); 
 limits = (uint64_t *)Cache_Aligned_Allocate(28 * 8); 
 desired = (uint64_t *)Cache_Aligned_Allocate(1200 * 8); 
 bestout = (uint64_t *)Cache_Aligned_Allocate(28 * 8); 
 

/*assign the weights to aligned memory for transfer to chip banks*/ 
 for (i=0; i<24480; i++) 
 { 
  WEIGHTS[i] = weights[i]; 
 } 
 
 /*This variable is stored after the limits and it is a flag that  

controls the loading of weights. 1 is load weights on function call*/ 
 limits[27] = 1; 
 

/*A call to the chip, the only purpose of this call is to load the weights*/ 
 swarm(WEIGHTS, Agents, limits, desired, bestout, mapnum); 
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 /*This variable is stored after the limits and it is a flag that  
 controls the loading of weights. 0 does not load weights*/ 
 limits[27] = 0; 
 

/*this puts the xMax, xMin, and vMax 16 bit variables into a 64 bit variable to 
simplfy transfers to chip*/ 

 uint64_t temp1,temp2,temp3; 
 for(i=0; i<27; i++) 
 { 
  temp1 = xMax[i] << 32; 
  temp2 = xMin[i] << 16; 
  temp3 = vMax[i]; 
  limits[i] = temp1 + temp2 + temp3; 
 } 
 
 /*this puts the starting velocity and position 16 bit variables into a 64 bit variable 
 to simplfy transfers to chip*/ 
 for(i=0; i<10; i++) 
 { 
  for(j=0; j<27; j++) 
  { 
   temp1 = psuedorandv[j+27*i] << 16;   
   temp2 = psuedorandx[j+27*i]; 
   Agents[j*10+i]= temp1 + temp2; 
  } 
 } 
 
 /*Query user to determine type of search desired or to quit*/ 
 answer = 4; 
 while(answer !=1 && answer != 2 && answer !=3 ) 
 { 
  printf("Would like to match an output from the file knownouts.txt or 
maximize a rectangle?\n"); 
  printf("Type 1 for known set or 2 for rectangle or 3 to quit:"); 
  scanf("%d",&answer); 
 } 
 
 /*loop to keep doing multiple searches*/ 
 while(answer !=3) 
 { 

/*To maximize(get as close to 0 as possible) the ensonification in a 
specified rectangle*/ 

  if(answer == 2) 
  { 
   x1=100; 
   x2=100; 
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   y1=100; 
   y2=100; 
 
   printf("Type in corners of desired square(1<=X1<=X2<=15, 
1<=Y1<=Y2<=80):\n"); 
   while(x1>15 || x1<1) 
   { 
    printf("X1?:"); 
    scanf("%d",&x1); 
   } 
   while(x2>15 || x2<x1) 
   { 
    printf("X2?:"); 
    scanf("%d",&x2); 
   } 
   while(y1>80 || y1<1) 
   { 
    printf("Y1?:"); 
    scanf("%d",&y1); 
   } 
   while(y2>80 || y2<y1) 
   { 
    printf("Y2?:"); 
    scanf("%d",&y2); 
   } 
 

/*These loops make the desired outputs for the fitness function, 
with don't care being 33568 
knownouts is the desired output used by the fitness function.  Note 
that it is a 64 bit number. 
The fitness function uses 15 bit numbers with a sign.  Since all 
outputs are negative, the sign 
bit can be treated as a normal bit and then using 65536 can be 
treated as zero.*/ 

   for(i=0;i<1200;i++) 
   { 
    knownouts[i]=33568; 
   } 
 
   for(i=x1-1;i<x2;i++) 
   { 
    for(j=y1-1;j<y2;j++) 
    { 
     knownouts[i*80+j]=65536; 
    } 
   } 
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  } 
/*A known set of outputs is stored in knownouts.txt.  If this option is 
chosen, the set is  
loaded into  knownouts, the desired result of fitness function. Outputs are 
16 bits with 1  
sign bit followed by 10 integer bits and 5 fractional bits S XXX XXXX 
XXX.X XXXX*/ 

  else 
  { 
   knownfile = fopen("knownouts.txt","r"); 
   for(i=0; i<1200; i++) 
   { 
    fscanf(knownfile,"%d",&knownouts[i]); 
   } 
   fclose(knownfile); 
  } 
 
   
  /*put the desired outputs into a variable for transfer to  
  the chip*/ 
  for(i=0; i<1200; i++) 
  { 
   desired[i] = knownouts[i]; 
  } 
 
  /*record starting time*/ 
  starttime = second(); 
 
  /*Call the PSO with appropriate variables*/ 
  swarm(WEIGHTS, Agents, limits, desired, bestout, mapnum); 
 
  /*record end time and display total calculation time*/ 
  endtime = second(); 
  cumetime = endtime-starttime; 
  printf("%f seconds\n",cumetime); 
 

/*best out is the set of inputs found the most accurately matched the 
desired output.  The decimal value is displayed here.  It is a sign bit 
followed by 14 integer bits 

  and one fractional bit. S XXX XXXX XXXX XXX.X*/ 
  for(i=0; i<27; i++) 
  { 
   float temp = bestout[i]; 
   temp = temp/2; 
   printf("%f\n",temp); 
  } 
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/*Query user to determine type of search desired or to quit*/ 

  answer = 4; 
  while(answer !=1 && answer != 2 && answer !=3 ) 
  { 
   printf("Would like to match an output from the file knownouts.txt 
or maximize a rectangle?\n"); 
   printf("Type 1 for known set or 2 for rectangle or 3 to quit:"); 
   scanf("%d",&answer); 
  } 
 } 
 
 

/*uncomment this portion of code and comment above to calculate several known 
outs stored in knownouts.txt*/ 

 /*knownfile = fopen("knownouts.txt","r"); 
 for(j=0; j<100; j++) 
 { 
  for(i=0; i<1200; i++) 
  { 
   fscanf(knownfile,"%d",&knownouts[i]); 
   desired[i] = knownouts[i]; 
  } 
 
  swarm(WEIGHTS, Agents, limits, desired, bestout, mapnum); 
 
  //******************************************************* 
  //    best is the found global best 
  //******************************************************* 
 
  for(i=0; i<27; i++) 
  { 
   float temp = bestout[i]; 
   temp = temp/2; 
   printf("%f\n",temp); 
  } 
 } 
 fclose(knownfile);*/ 
 
 /*free the map*/ 
 map_free(1); 
  
 /*we're outta here*/ 
 exit(0); 
} 
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APPENDIX B 
 

Parallel Input Network and Swarm Code 
 
 

Makefile
 

 
# ---------------------------------- 
# User defines FILES, MAPFILES, and BIN here 
# ---------------------------------- 
FILES   = main.c  
 
MAPFILES  = swarm.mc fitness.mc  
PRIMARY  = swarm.mc 
SECONDARY = fitness.mc 
CHIP2  = fitness.mc 
 
BIN   = swarm 
 
# ----------------------------------- 
# User defined macros info supplied here 
# ----------------------------------- 
MACROS  = my_macro/squash.vhd  \ 
     my_macro/moveit.vhd 
 
MY_BLKBOX  = my_macro/blkbox.v 
MY_NGO_DIR  = my_macro 
MY_INFO  = my_macro/macros.inf 
# ----------------------------------- 
# User supplied MCC and MFTN flags 
# ----------------------------------- 
 
MY_MCCFLAGS  = -v 
MY_MFTNFLAGS = -v 
 
# ----------------------------------- 
# User supplied flags for C & Fortran compilers 
# ----------------------------------- 
 
CC  = icc  # icc for Intel cc for Gnu 
FC  = ifort # ifort for Intel f77 for Gnu 
LD  = ifort # ifort for Intel cc  for Gnu 
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MY_CFLAGS  =  
MY_FFLAGS =  
# ----------------------------------- 
# No modifications are required below 
# ----------------------------------- 
MAKIN   ?= $(MC_ROOT)/opt/srcci/comp/lib/AppRules.make 
include $(MAKIN) 
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APPENDIX C 
 

Parallel Input Network and Swarm Code 
 
 

Swarm.mc
 

 
#include "libmap.h" 
 
void swarm(int64_t WEIGHTDATA[], int64_t AGENTDATA[], int64_t LIMITDATA[], 
int64_t DESIREDATA[], int64_t BESTOUT[], int mapno)  
{ 
 /*allocates Banks to be used by both chips*/ 
 OBM_BANK_A(WEIGHTS, int64_t, MAX_OBM_SIZE) 
   OBM_BANK_B(AGENTS, int64_t, MAX_OBM_SIZE) 
   OBM_BANK_C(GLOBAL, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_D(DESIRED, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_E(G, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_F(FL, int64_t, MAX_OBM_SIZE) 
 
 /*variable declerations*/ 
 int i,j,k, wAgent; 
 short tempA1,tempA2,tempA3,tempA4; 
 short tempG1,tempG2,tempG3,tempG4; 
  
 uint64_t error; 
  
 uint64_t X[270]; 
 uint64_t V[270]; 
 uint64_t P[270]; 
 uint64_t tempX, tempV; 
 
 uint64_t PB[10]; 
 
 uint64_t GB; 
 
 uint64_t MAX_X[27]; 
 uint64_t MIN_X[27]; 
 uint64_t MAX_V[27]; 
 
 uint64_t value_00; 
 uint64_t value_01; 
 uint64_t value_02; 
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 uint64_t value_03; 
 uint64_t value_04; 
 uint64_t value_05; 
 uint64_t value_06; 
 uint64_t value_07; 
 uint64_t value_08; 
 uint64_t value_09; 
 uint64_t value_10; 
 uint64_t value_11; 
 uint64_t value_12; 
 uint64_t value_13; 
 uint64_t value_14; 
 uint64_t value_15; 
 uint64_t value_16; 
 uint64_t value_17;  
 uint64_t value_18; 
 uint64_t value_19; 
 uint64_t value_20; 
 uint64_t value_21; 
 uint64_t value_22; 
 uint64_t value_23; 
 uint64_t value_24; 
 uint64_t value_25; 
 uint64_t value_26; 
  
 uint64_t temp_00; 
 uint64_t temp_01; 
 uint64_t temp_02; 
 uint64_t temp_03; 
 uint64_t temp_04; 
 uint64_t temp_05; 
 uint64_t temp_06; 
 uint64_t temp_07; 
 uint64_t temp_08; 
 uint64_t temp_09; 
 uint64_t temp_10; 
 uint64_t temp_11; 
 uint64_t temp_12; 
 uint64_t temp_13; 
 uint64_t temp_14; 
 uint64_t temp_15; 
 uint64_t temp_16; 
 uint64_t temp_17;  
 uint64_t temp_18; 
 uint64_t temp_19; 
 uint64_t temp_20; 
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 uint64_t temp_21; 
 uint64_t temp_22; 
 uint64_t temp_23; 
 uint64_t temp_24; 
 uint64_t temp_25; 
 uint64_t temp_26; 
  
 /*transfer to banks in the velocity and search space restrictions*/ 
   DMA_CPU(CM2OBM, GLOBAL, MAP_OBM_stripe(1, "C"), LIMITDATA, 1, 
28*8, 0); 
   wait_DMA(0); 
  
 /*only transfer in weights if requested*/ 
 if(GLOBAL[27] == 1) 
 { 
    DMA_CPU(CM2OBM, WEIGHTS, MAP_OBM_stripe(1, "A"), 
WEIGHTDATA, 1, 24480*8, 0); 
    wait_DMA(0); 
 } 
 
 /*transfer in the agent location and velocity data*/ 
 DMA_CPU(CM2OBM, AGENTS, MAP_OBM_stripe(1, "B"), AGENTDATA, 
1, 272*8, 0); 
  wait_DMA(0); 
   
  /*transfer in the target output data*/ 
 DMA_CPU(CM2OBM, DESIRED, MAP_OBM_stripe(1, "D"), DESIREDATA, 
1, 1200*8, 0); 
   wait_DMA(0); 
 
  
 /*send the fitness chip the weights and the flag for whether to load or not*/ 
 send_perms(OBM_A|OBM_C); 
 
 /*wait for fitness chip to finish*/ 
 recv_from_bridge();  
 
 /*send the fitness chip the target data*/ 
 send_perms(OBM_D); 
 
 /*divide up the velocity and locations for 10 agents and store in BRAM*/ 
 for(i=0; i<270; i++) 
 { 
  split_64to16(AGENTS[i], &tempA1, &tempA2, &tempA3, &tempA4); 
  V[i] = tempA3; 
  X[i] = tempA4; 
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 } 
 
 /*divide up the rnage and velocity limits and store in BRAM*/ 
 for(i=0; i<27; i++) 
 { 
  split_64to16(GLOBAL[i], &tempG1, &tempG2, &tempG3, &tempG4); 
  MAX_X[i] = tempG2; 
  MIN_X[i] = tempG3; 
  MAX_V[i] = tempG4; 
 } 
 
 /*assign personal best location to current location. Obviously, if  
 it hasn't looked anywhere else, here is the best.  Agents are stored  
 by dimension.  In the array, first value is Agent 1's x1 followed by 
 Agent 2's x1, Agent 3's x1 and so on til Agent 10's x1.  Then comes  
 Agent 1's x2, Agent 2's x2 and so on.*/ 
 for(i=0; i<270; i++) 
 { 
  P[i] = X[i]; 
 } 
 
 /*assign personal best to a high number so that a real one will be found easily.*/ 
 for(i=0; i<10; i++) 
 { 
  PB[i] = 0xFFFF; 
 } 
 
 /*arbitrarily assign global best location to the first agent.*/ 
 k=0; 
 for(i=0; i<270; i+=10) 
 { 
  G[k] = X[i]; 
  k++; 
 } 
  
 /*assign Global best to a high value so a real global best is found easily.*/ 
 GB = 0xFFFFFFFF; 
 
 /*starting with first agent*/ 
 wAgent=0; 
  
 /*the for loop keeps track of fitness evaluations. One fitness evaluation is  
 done for one agent each time through the loop. The agent number is incremented  
 each time through, so for 100,000 times through the loop with 10 agents, each 
 agent moves 10,000 times. */ 
 for(i=0; i<100000; i++) 
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 { 
  /*gets the values of one agent for fitness evaluation*/ 
  temp_00=X[0+wAgent]; 
  temp_01=X[10+wAgent]; 
  temp_02=X[20+wAgent]; 
  temp_03=X[30+wAgent]; 
  temp_04=X[40+wAgent]; 
  temp_05=X[50+wAgent]; 
  temp_06=X[60+wAgent]; 
  temp_07=X[70+wAgent]; 
  temp_08=X[80+wAgent]; 
  temp_09=X[90+wAgent]; 
  temp_10=X[100+wAgent]; 
  temp_11=X[110+wAgent]; 
  temp_12=X[120+wAgent]; 
  temp_13=X[130+wAgent]; 
  temp_14=X[140+wAgent]; 
  temp_15=X[150+wAgent]; 
  temp_16=X[160+wAgent]; 
  temp_17=X[170+wAgent];  
  temp_18=X[180+wAgent]; 
  temp_19=X[190+wAgent]; 
  temp_20=X[200+wAgent]; 
  temp_21=X[210+wAgent]; 
  temp_22=X[220+wAgent]; 
  temp_23=X[230+wAgent]; 
  temp_24=X[240+wAgent]; 
  temp_25=X[250+wAgent]; 
  temp_26=X[260+wAgent]; 
  
  /*reassigns agent to new registers to meet timing*/ 
  value_00=temp_00; 
  value_01=temp_01; 
  value_02=temp_02; 
  value_03=temp_03; 
  value_04=temp_04; 
  value_05=temp_05; 
  value_06=temp_06; 
  value_07=temp_07; 
  value_08=temp_08; 
  value_09=temp_09; 
  value_10=temp_10; 
  value_11=temp_11; 
  value_12=temp_12; 
  value_13=temp_13; 
  value_14=temp_14; 
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  value_15=temp_15; 
  value_16=temp_16; 
  value_17=temp_17; 
  value_18=temp_18; 
  value_19=temp_19; 
  value_20=temp_20; 
  value_21=temp_21; 
  value_22=temp_22; 
  value_23=temp_23; 
  value_24=temp_24; 
  value_25=temp_25; 
  value_26=temp_26; 
   
  /*sends to other chip for fitness evaluation*/ 
  send_to_bridge( value_00, value_01, value_02, value_03, value_04, 
value_05, value_06, value_07, value_08, value_09, value_10, value_11, value_12, 
value_13, value_14, value_15, value_16, value_17, value_18, value_19, value_20, 
value_21, value_22, value_23, value_24, value_25, value_26); 
 
  /*receives fitness for current agent*/ 
  recv_from_bridge(&error); 
 
  /*shows starting fitness for debugging purposes*/ 
  if(i==0) G[27] = error; 
 
  /*if fitness has improved over personal best, reassign the personal best*/ 
  if(error<PB[wAgent]) 
  { 
   for(j=wAgent; j<270; j+=10) 
   { 
    P[j]=X[j]; 
   } 
   PB[wAgent] = error; 
  } 
 
  /*if fitness has improved over global best, reassign the global best*/ 
  if(error<GB) 
  { 
   k=0; 
   for(j=wAgent; j<270; j+=10) 
   { 
    G[k]=X[j]; 
    k++; 
   } 
   GB = error; 
  } 
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  /*agent movement*/ 
  k=0; 
  for(j=wAgent; j<270; j+=10) 
  { 
   /*put velocities and positions into a temporary location so they can 
be over written*/ 
   tempX = X[j]; 
   tempV = V[j]; 
    
   /*Updates the agent locations and velocities using the equations 
   X(k+1) = X(k) + V(k) 
   V(k+1) = V(k) + w1*(G-X(k))+w2*(P-X(k)) 
   */ 
   moveit(tempX, tempV, P[j], G[k], MAX_X[k], MIN_X[k], 
MAX_V[k], &X[j], &V[j]); 
    
   k++; 
  } 
   
  /*goes to next agent*/ 
  if(wAgent==9) 
  { 
    wAgent = 0; 
  } 
  else 
  { 
    wAgent++; 
  } 
 } 
 
 /*transfer out the set of inputs the best matches the target outputs.*/ 
   DMA_CPU(OBM2CM, G, MAP_OBM_stripe(1, "E"), BESTOUT, 1, 28*8, 0); 
   wait_DMA(0); 
} 
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APPENDIX D 
 

Parallel Input Network and Swarm Code 
 
 

Fitness.mc
 

 
#include "libmap.h" 
 
void fitness()  
{ 
 /*bank declaration*/ 
 OBM_BANK_A(WEIGHTS, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_C(CHECK_I27, int64_t, MAX_OBM_SIZE) 
 OBM_BANK_D(DESIRED, int64_t, MAX_OBM_SIZE) 
 
 /*variable declaration*/ 
   int i, j, k, layer, weight, outloc, node; 
 int64_t output, difference, error, Total_Error,temp2,tempdesired; 
 
   int64_t w1_4[1360]; 
   int64_t w5_8[1360]; 
   int64_t w9_12[1360]; 
   int64_t w13_16[1360]; 
   int64_t w17_20[1360]; 
   int64_t w21_24[1360]; 
   int64_t w25_28[1360]; 
   int64_t w29_32[1360]; 
   int64_t w33_36[1360]; 
  int64_t w37_40[1360]; 
  int64_t w41_44[1360]; 
   int64_t w45_48[1360]; 
   int64_t w49_52[1360]; 
   int64_t w53_56[1360]; 
   int64_t w57_60[1360]; 
   int64_t w61_64[1360]; 
  int64_t w65_68[1360]; 
   int64_t w69_72[1360]; 
 
   int64_t input_1; 
   int64_t input_2; 
   int64_t input_3; 
   int64_t input_4; 
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   int64_t input_5; 
   int64_t input_6; 
   int64_t input_7; 
   int64_t input_8; 
   int64_t input_9; 
   int64_t input_10; 
   int64_t input_11; 
   int64_t input_12; 
   int64_t input_13; 
   int64_t input_14; 
   int64_t input_15; 
   int64_t input_16; 
   int64_t input_17; 
   int64_t input_18; 
   int64_t input_19; 
   int64_t input_20; 
   int64_t input_21; 
   int64_t input_22; 
   int64_t input_23; 
   int64_t input_24; 
   int64_t input_25; 
   int64_t input_26; 
   int64_t input_27; 
 
 /*This gets access to the bank with weights and weight flag from swarm chip*/ 
 recv_perms (); 
 
 /*This checks to see if weights need to be loaded, if so, the weights 
 are loaded into BRAM*/ 
 if(CHECK_I27[27] == 1) 
 { 
  j=0; 
  for(i=0; i<1360; i++) 
  { 
     w1_4[i]=WEIGHTS[j+0]; 
     w5_8[i]=WEIGHTS[j+1]; 
     w9_12[i]=WEIGHTS[j+2]; 
     w13_16[i]=WEIGHTS[j+3]; 
     w17_20[i]=WEIGHTS[j+4]; 
     w21_24[i]=WEIGHTS[j+5]; 
     w25_28[i]=WEIGHTS[j+6]; 
     w29_32[i]=WEIGHTS[j+7]; 
     w33_36[i]=WEIGHTS[j+8]; 
     w37_40[i]=WEIGHTS[j+9]; 
     w41_44[i]=WEIGHTS[j+10]; 
    w45_48[i]=WEIGHTS[j+11]; 
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     w49_52[i]=WEIGHTS[j+12]; 
     w53_56[i]=WEIGHTS[j+13]; 
     w57_60[i]=WEIGHTS[j+14]; 
     w61_64[i]=WEIGHTS[j+15]; 
     w65_68[i]=WEIGHTS[j+16]; 
     w69_72[i]=WEIGHTS[j+17]; 
     j=j+18; 
  } 
 } 
  
 /*This tells the swarm chip that weights have been loaded.*/ 
 send_to_bridge(); 
  
 /*Receives permission to use the target output bank*/ 
 recv_perms(); 
 
 /*loops 100000 times, which is equivalent to the number of fitness evaluations.  A  
 loop on the swarm chip works with this loop*/ 
 for(j=0; j<100000; j++) 
 { 
  /*this receives set of inputs generated by the swarm chip*/  
  recv_from_bridge ( &input_1 , &input_2 , &input_3 , &input_4 , 
&input_5 , &input_6 , &input_7 , &input_8 , &input_9 , &input_10,  
          &input_11, &input_12, &input_13, &input_14, 
&input_15, &input_16, &input_17, &input_18, &input_19, &input_20,  
          &input_21, &input_22, &input_23, &input_24, 
&input_25, &input_26, &input_27); 
 
  /*this loop is the actual network evaluation*/ 
  for(i=0; i < 1488; i++) 
  { 
   /*This counter "node" keeps track of which node is currently being 
evaluated.  The maximum number of 
   nodes on layer is 70, though it counts to 95 to account the latency 
of the sum and squash functions. 
   Each layer must be completed before the next layer can be 
started.*/ 
   cg_count_ceil_32(1&&i<290,0,i==0, 0x0000005F, &node); //node 
count to 95 repeat 
    
   /*The variable "layer" keeps track of which layer is currently being 
evaluated.*/ 
   cg_count_ceil_32(node==0&&i<290,1,i==0,0xffffffff,&layer);  
//layer, when its right count up 
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   /*The variable "outloc" keeps track of the which output is being 
calculated.  It only increments 
   on the output layer*/  
   cg_count_ceil_32(layer==4&&node!=0,0,i==0,0xffffffff,&outloc);   
    
   /*The variable "weight" controls which weights are being used for 
node evaluation.  It only increments 
   when the "node" variable is counting real nodes and not during 
latency calculations*/ 
  
 cg_count_ceil_32(layer==1&&node<41&&node>0||layer==2&&node<51&&nod
e>0||layer==3&&node<71&&node>0||layer>3&&node==1,0,i==0,0xffffffff,&weight);  
  
   //Debugging Code displays above 
   //printf("node=%d layer=%d weight=%d next=%d 
outloc=%d\n",node,layer,weight,node==0&&layer!=1,outloc); 
   
   /*This function takes in the inputs and weights and does all the 
actual node calculations and storing of 
   nodes on the hidden layers.*/ 
     squash( 
    input_1  ,input_2  ,input_3  ,input_4  ,input_5  ,input_6  
,input_7  ,input_8  ,input_9  ,input_10 , 
    input_11 ,input_12 ,input_13 ,input_14 ,input_15 ,input_16 
,input_17 ,input_18 ,input_19 ,input_20 , 
    input_21 ,input_22 ,input_23 ,input_24 ,input_25 ,input_26 
,input_27 , 
    w1_4[weight]   ,w5_8[weight]   ,w9_12[weight]  
,w13_16[weight] ,w17_20[weight], 
    w21_24[weight] ,w25_28[weight] ,w29_32[weight] 
,w33_36[weight] ,w37_40[weight] , 
    w41_44[weight] ,w45_48[weight] ,w49_52[weight] 
,w53_56[weight] ,w57_60[weight] , 
    w61_64[weight] ,w65_68[weight] ,w69_72[weight] , 
    i==0    , //FIRST => LOAD INPUTS ON FIRST CLK 
    node==0&&layer!=1, //NEXT LAYER => not used here 
    layer   , //LAYER NUMBER => LAYER 0 
    node   , //NODE NUMBER => COUNTS NODES 
       0       , //squash => 0 is never squash the outputs. 
       &output    //OUTPUT => save 
      ); 
       
      /*This portion of code finds the positive difference between a point 
on the target output and the  
      corresponding point on the actual output*/ 
      tempdesired=DESIRED[outloc]; 
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   difference = output - DESIRED[outloc]; 
   if(difference<0) 
       error = 0-difference; 
     else 
       error = difference; 
        
      /*Total_Error is the sum of the difference between the target 
output and the actual output. 
      Don't Care differences designated by a 33568 in the target output, 
are not included.  Only the 
      output layer is included.*/ 
      cg_accum_add_64 (error, tempdesired!=33568 && layer==4, 0, 
i==0, &Total_Error); 
  } 
 
  /*This sends the Error to the swarm chip so that it can update its agents.*/ 
  send_to_bridge (Total_Error); 
 } 
} 
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APPENDIX E 
 

Parallel Input Network and Swarm Code 
 
 

Blkbox.v
 
 

module squash( 
  IN1, 
      IN2, 
      IN3, 
      IN4, 
      IN5, 
      IN6, 
      IN7, 
      IN8, 
      IN9, 
      IN10, 
      IN11, 
      IN12, 
      IN13, 
      IN14, 
      IN15, 
      IN16, 
      IN17, 
      IN18, 
      IN19, 
      IN20, 
      IN21, 
      IN22, 
      IN23, 
      IN24, 
      IN25, 
      IN26, 
      IN27,   
      TB1_4, 
      TB5_8, 
      TB9_12, 
      TB13_16, 
      TB17_20, 
      TB21_24, 
      TB25_28, 
      TB29_32, 
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      TB33_36, 
      TB37_40, 
      TB41_44, 
      TB45_48, 
      TB49_52, 
      TB53_56, 
      TB57_60, 
      TB61_64, 
      TB65_68, 
      TB69_72, 
      FIRST, 
      NEXTLAYER, 
      LAYERNUM, 
      NODE, 
      SQSH, 
      OUTVALUE, 
      CLK 
)/* synthesis syn_black_box*/; 
 
    input [63:0] IN1; 
    input [63:0] IN2; 
    input [63:0] IN3; 
    input [63:0] IN4; 
    input [63:0] IN5; 
    input [63:0] IN6; 
    input [63:0] IN7; 
    input [63:0] IN8; 
    input [63:0] IN9; 
    input [63:0] IN10; 
    input [63:0] IN11; 
    input [63:0] IN12; 
    input [63:0] IN13; 
    input [63:0] IN14; 
    input [63:0] IN15; 
    input [63:0] IN16; 
    input [63:0] IN17; 
    input [63:0] IN18; 
    input [63:0] IN19; 
    input [63:0] IN20; 
    input [63:0] IN21; 
    input [63:0] IN22; 
    input [63:0] IN23; 
    input [63:0] IN24; 
    input [63:0] IN25; 
    input [63:0] IN26; 
    input [63:0] IN27; 
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    input [63:0] TB1_4; 
    input [63:0] TB5_8; 
    input [63:0] TB9_12; 
    input [63:0] TB13_16; 
    input [63:0] TB17_20; 
    input [63:0] TB21_24; 
    input [63:0] TB25_28; 
    input [63:0] TB29_32; 
    input [63:0] TB33_36; 
    input [63:0] TB37_40; 
    input [63:0] TB41_44; 
    input [63:0] TB45_48; 
    input [63:0] TB49_52; 
    input [63:0] TB53_56; 
    input [63:0] TB57_60; 
    input [63:0] TB61_64; 
    input [63:0] TB65_68; 
    input [63:0] TB69_72; 
    input FIRST; 
    input NEXTLAYER; 
    input [7:0] LAYERNUM; 
    input [7:0] NODE; 
    input SQSH; 
  output [63:0] OUTVALUE; 
  input  CLK /* synthesis syn_noclockbuf=1 */; 
endmodule 
 
module moveit( 
  CURX, 
      CURV, 
      PB, 
      GB, 
      MAXX, 
      MINX, 
      MAXV, 
      NEXTX, 
      NEXTV, 
      CLK 
)/* synthesis syn_black_box*/; 
 
    input [63:0] CURX; 
    input [63:0] CURV; 
    input [63:0] PB; 
    input [63:0] GB; 
    input [63:0] MAXX; 
    input [63:0] MINX; 
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    input [63:0] MAXV; 
 output [63:0] NEXTX; 
 output [63:0] NEXTV; 
  input  CLK /* synthesis syn_noclockbuf=1 */; 
endmodule 
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APPENDIX F 
 

Parallel Input Network and Swarm Code 
 
 

Macros.inf
 
 

BEGIN_DEF "squash" 
  MACRO = "squash"; 
  LATENCY = 23; 
  STATEFUL = NO; 
  EXTERNAL = NO; 
  PIPELINED= YES; 
 
  INPUTS = 50: 
    I0 = INT 64 BITS (IN1[63:0]) 
    I1 = INT 64 BITS (IN2[63:0]) 
    I2 = INT 64 BITS (IN3[63:0]) 
    I3 = INT 64 BITS (IN4[63:0]) 
    I4 = INT 64 BITS (IN5[63:0]) 
    I5 = INT 64 BITS (IN6[63:0]) 
    I6 = INT 64 BITS (IN7[63:0]) 
    I7 = INT 64 BITS (IN8[63:0]) 
    I8 = INT 64 BITS (IN9[63:0]) 
    I9 = INT 64 BITS (IN10[63:0]) 
    I10 = INT 64 BITS (IN11[63:0]) 
    I11 = INT 64 BITS (IN12[63:0]) 
    I12 = INT 64 BITS (IN13[63:0]) 
    I13 = INT 64 BITS (IN14[63:0]) 
    I14 = INT 64 BITS (IN15[63:0]) 
    I15 = INT 64 BITS (IN16[63:0]) 
    I16 = INT 64 BITS (IN17[63:0]) 
    I17 = INT 64 BITS (IN18[63:0]) 
    I18 = INT 64 BITS (IN19[63:0]) 
    I19 = INT 64 BITS (IN20[63:0]) 
    I20 = INT 64 BITS (IN21[63:0]) 
    I21 = INT 64 BITS (IN22[63:0]) 
    I22 = INT 64 BITS (IN23[63:0]) 
    I23 = INT 64 BITS (IN24[63:0]) 
    I24 = INT 64 BITS (IN25[63:0]) 
    I25 = INT 64 BITS (IN26[63:0]) 
    I26 = INT 64 BITS (IN27[63:0])  
    I27 = INT 64 BITS (TB1_4[63:0]) 
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    I28 = INT 64 BITS (TB5_8[63:0]) 
    I29 = INT 64 BITS (TB9_12[63:0]) 
    I30 = INT 64 BITS (TB13_16[63:0]) 
    I31 = INT 64 BITS (TB17_20[63:0]) 
    I32 = INT 64 BITS (TB21_24[63:0]) 
    I33 = INT 64 BITS (TB25_28[63:0]) 
    I34 = INT 64 BITS (TB29_32[63:0]) 
    I35 = INT 64 BITS (TB33_36[63:0]) 
    I36 = INT 64 BITS (TB37_40[63:0]) 
    I37 = INT 64 BITS (TB41_44[63:0]) 
    I38 = INT 64 BITS (TB45_48[63:0]) 
    I39 = INT 64 BITS (TB49_52[63:0]) 
    I40 = INT 64 BITS (TB53_56[63:0]) 
    I41 = INT 64 BITS (TB57_60[63:0]) 
    I42 = INT 64 BITS (TB61_64[63:0]) 
    I43 = INT 64 BITS (TB65_68[63:0]) 
    I44 = INT 64 BITS (TB69_72[63:0]) 
    I45 = INT 1 BITS (FIRST) 
    I46 = INT 1 BITS (NEXTLAYER) 
    I47 = INT 8 BITS (LAYERNUM) 
    I48 = INT 8 BITS (NODE) 
    I49 = INT 1 BITS (SQSH) 
  ; 
  OUTPUTS = 1: 
    O0 = INT 64 BITS (OUTVALUE[63:0]) 
  ; 
 
  IN_SIGNAL : 1 BITS "CLK" = "CLOCK"; 
 
DEBUG_HEADER = # 
void squash__dbg( int64_t A1 ,int64_t A2 ,int64_t A3 ,int64_t A4 ,int64_t A5 , 
   int64_t A6 ,int64_t A7 ,int64_t A8 ,int64_t A9 ,int64_t A10,  
   int64_t A11,int64_t A12,int64_t A13,int64_t A14,int64_t A15, 
   int64_t A16,int64_t A17,int64_t A18,int64_t A19,int64_t A20,  
   int64_t A21,int64_t A22,int64_t A23,int64_t A24,int64_t A25, 
   int64_t A26,int64_t A27, 
   int64_t B1_4  , int64_t B5_8  , int64_t B9_12 , int64_t B13_16, 
   int64_t B17_20, int64_t B21_24, int64_t B25_28, int64_t B29_32, 
   int64_t B33_36, int64_t B37_40, int64_t B41_44, int64_t B45_48, 
   int64_t B49_52, int64_t B53_56, int64_t B57_60, int64_t B61_64, 
   int64_t B65_68, int64_t B69_72, 
   int FIRST, 
   int NEXTLAYER, 
   int LAYERNUM, 
   int NODE, 
   int SQSH, 



 80 

 

   int64_t *OUTVALUE); 
#; 
 
 
DEBUG_FUNC = # 
void squash__dbg( int64_t A1 ,int64_t A2 ,int64_t A3 ,int64_t A4 ,int64_t A5 , 
   int64_t A6 ,int64_t A7 ,int64_t A8 ,int64_t A9 ,int64_t A10,  
   int64_t A11,int64_t A12,int64_t A13,int64_t A14,int64_t A15, 
   int64_t A16,int64_t A17,int64_t A18,int64_t A19,int64_t A20,  
   int64_t A21,int64_t A22,int64_t A23,int64_t A24,int64_t A25, 
   int64_t A26,int64_t A27, 
   int64_t B1_4  , int64_t B5_8  , int64_t B9_12 , int64_t B13_16, 
   int64_t B17_20, int64_t B21_24, int64_t B25_28, int64_t B29_32, 
   int64_t B33_36, int64_t B37_40, int64_t B41_44, int64_t B45_48, 
   int64_t B49_52, int64_t B53_56, int64_t B57_60, int64_t B61_64, 
   int64_t B65_68, int64_t B69_72, 
   int FIRST, 
   int NEXTLAYER, 
   int LAYERNUM, 
   int NODE, 
   int SQSH, 
   int64_t *OUTVALUE) 
{  
 *OUTVALUE = 0x0003040; 
  
}    
#; 
END_DEF 
 
 
BEGIN_DEF "moveit" 
  MACRO = "moveit"; 
  LATENCY = 3; 
  STATEFUL = NO; 
  EXTERNAL = NO; 
  PIPELINED= YES; 
 
  INPUTS = 7: 
    I0 = INT 64 BITS (CURX[63:0]) 
    I1 = INT 64 BITS (CURV[63:0]) 
    I2 = INT 64 BITS (PB[63:0]) 
    I3 = INT 64 BITS (GB[63:0]) 
    I4 = INT 64 BITS (MAXX[63:0]) 
    I5 = INT 64 BITS (MINX[63:0]) 
    I6 = INT 64 BITS (MAXV[63:0]) 
  ; 
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  OUTPUTS = 2: 
    O0 = INT 64 BITS (NEXTX[63:0]) 
    O1 = INT 64 BITS (NEXTV[63:0]) 
  ; 
 
  IN_SIGNAL : 1 BITS "CLK" = "CLOCK"; 
END_DEF 
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APPENDIX G 
 

Parallel Input Network and Swarm Code 
 
 

Moveit.vhd
 

 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity moveit is 
    Port (   
      CURX   : in std_logic_vector(63 downto 0); --One Dimension of 
one agent's current location 
      CURV   : in std_logic_vector(63 downto 0); --One Dimension of 
one agent's current velocity 
      PB    : in std_logic_vector(63 downto 0); --One Dimension of 
one agent's personal best location 
      GB   : in std_logic_vector(63 downto 0); --One Dimension of 
the global best location 
      MAXX   : in std_logic_vector(63 downto 0); --Maximum of the 
search space in One Dimension 
      MINX   : in std_logic_vector(63 downto 0); --Minimum of the search 
space in One Dimension 
      MAXV   : in std_logic_vector(63 downto 0); --Maximum velocity 
of an agent in One Dimension 
      
      NEXTX  : out std_logic_vector(63 downto 0); --One Dimension of 
one agent's moved location 
      NEXTV  : out std_logic_vector(63 downto 0); --One Dimension of 
one agent's updated velocity 
      CLK      : in std_logic 
           ); 
end moveit; 
 
architecture Behavioral of moveit is 
 signal TEMPX : std_logic_vector(63 downto 0); 
 signal TEMPV : std_logic_vector(63 downto 0); 
 signal PBIAS : std_logic_vector(63 downto 0); 
 signal GBIAS : std_logic_vector(63 downto 0); 
 signal MAXX1 : std_logic_vector(63 downto 0); 
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 signal MINX1 : std_logic_vector(63 downto 0); 
 signal MAXV1 : std_logic_vector(63 downto 0); 
  
 signal TEMPX2 : std_logic_vector(63 downto 0); 
 signal TEMPV2 : std_logic_vector(63 downto 0); 
 signal MAXV2 : std_logic_vector(63 downto 0); 
  
 signal TEMPX3 : std_logic_vector(63 downto 0); 
 signal TEMPV3 : std_logic_vector(63 downto 0); 
  
begin 
 reg0: process(clk) is 
 begin 
  if(clk'event and clk ='1') then 
    TEMPX <= CURX+CURV;  --update position 
using X[k+1] = X[k]+V[k] 
    PBIAS <= PB - CURX;  --find the direction 
and distance of the personal best 
    GBIAS <= GB - CURX;  --find the direction 
and distance of the global best 
    TEMPV <= CURV;   --keep current 
velocity for later use 
    MAXX1 <= MAXX;   --keep maximum 
position for later use 
    MINX1 <= MINX;   --keep minimum 
position for later use 
    MAXV1 <= MAXV;   --keep maximum 
velocity for later use 
     end if; 
    end process; 
 
 reg1: process(clk) is 
 begin 
  if(clk'event and clk ='1') then 
    --Update the velocity using V[k+1] = V[k] + 1/8*(PBest - 
X[k]) + 1/16*(GBest - X[k]) 
    TEMPV2 <= TEMPV + ("000" & PBIAS(63 downto 3)) + 
("0000" & GBIAS(63 downto 4)); 
     
    --Check to see if the new X position is with in the search 
space, if not set to Max or Min 
    if(TEMPX(15 downto 0) > MAXX1 and TEMPX(15 
downto 0) < X"8000") then 
     TEMPX2 <= MAXX1; 
    elsif(TEMPX(15 downto 0) < MINX1 or TEMPX(15 
downto 0) > X"7FFF") then 
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     TEMPX2 <= MINX1; 
    else 
     TEMPX2 <= TEMPX; 
    end if; 
     
 
    MAXV2 <= MAXV1;  -- Keep maximum 
velocity for later use 
     end if; 
    end process; 
     
    reg2: process(clk) is 
 begin 
  if(clk'event and clk ='1') then 
   --zero pad location to make 64 bits 
   TEMPX3 <= X"0000" & X"0000" & X"0000" & TEMPX2(15 
downto 0); 
    
   --See if the absolute value of the velocity is less than maximum 
velocity and set  velcocity accordingly 
   if(TEMPV2(15) = '0' and TEMPV2(15 downto 0) < MAXV2(15 
downto 0)) then 
    TEMPV3 <= X"0000" & X"0000" & X"0000" & 
TEMPV2(15 downto 0); 
   elsif(TEMPV2(15) = '0') then 
    TEMPV3 <= X"0000" & X"0000" & X"0000" & 
MAXV2(15 downto 0); 
   elsif(TEMPV2(15 downto 0) > not MAXV2(15 downto 0)) then 
    TEMPV3 <= X"0000" & X"0000" & X"0000" & 
TEMPV2(15 downto 0); 
   else  
    TEMPV3 <= X"0000" & X"0000" & X"0000" & not 
MAXV2(15 downto 0); 
   end if; 
    
     end if; 
    end process;  
  
------output  
 output: 
   NEXTX <= X"0000" & X"0000" & X"0000" & TEMPX3(15 downto 0);   
   NEXTV <= X"0000" & X"0000" & X"0000" & TEMPV3(15 downto 0);  
     
end architecture Behavioral; 
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APPENDIX H 
 

Parallel Input Network and Swarm Code 
 
 

Squash.vhd
 

 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
 
entity Squash is 
    Port (   
      IN1   : in std_logic_vector(63 downto 0);  --27 inputs, 16 bit numbers, 
64 bits used for easier transfer between chips. 
      IN2   : in std_logic_vector(63 downto 0); 
      IN3   : in std_logic_vector(63 downto 0); 
      IN4   : in std_logic_vector(63 downto 0); 
      IN5   : in std_logic_vector(63 downto 0); 
      IN6   : in std_logic_vector(63 downto 0); 
      IN7   : in std_logic_vector(63 downto 0); 
      IN8   : in std_logic_vector(63 downto 0); 
      IN9   : in std_logic_vector(63 downto 0); 
      IN10   : in std_logic_vector(63 downto 0); 
      IN11   : in std_logic_vector(63 downto 0); 
      IN12   : in std_logic_vector(63 downto 0); 
      IN13   : in std_logic_vector(63 downto 0); 
      IN14   : in std_logic_vector(63 downto 0); 
      IN15   : in std_logic_vector(63 downto 0); 
      IN16  : in std_logic_vector(63 downto 0); 
      IN17   : in std_logic_vector(63 downto 0); 
      IN18   : in std_logic_vector(63 downto 0); 
      IN19   : in std_logic_vector(63 downto 0); 
      IN20   : in std_logic_vector(63 downto 0); 
      IN21   : in std_logic_vector(63 downto 0); 
      IN22   : in std_logic_vector(63 downto 0); 
      IN23   : in std_logic_vector(63 downto 0); 
      IN24  : in std_logic_vector(63 downto 0); 
      IN25   : in std_logic_vector(63 downto 0); 
      IN26   : in std_logic_vector(63 downto 0); 
      IN27   : in std_logic_vector(63 downto 0); 
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      TB1_4   : in std_logic_vector(63 downto 0); --The weights are 16 
bit numbers stored 4 at a time in 64 bits numbers, first weight is MSB 
      TB5_8   : in std_logic_vector(63 downto 0); 
      TB9_12   : in std_logic_vector(63 downto 0); 
      TB13_16  : in std_logic_vector(63 downto 0); 
      TB17_20  : in std_logic_vector(63 downto 0); 
      TB21_24  : in std_logic_vector(63 downto 0); 
      TB25_28  : in std_logic_vector(63 downto 0); 
      TB29_32  : in std_logic_vector(63 downto 0); 
      TB33_36  : in std_logic_vector(63 downto 0); 
      TB37_40  : in std_logic_vector(63 downto 0); 
      TB41_44  : in std_logic_vector(63 downto 0); 
      TB45_48  : in std_logic_vector(63 downto 0); 
      TB49_52  : in std_logic_vector(63 downto 0); 
      TB53_56  : in std_logic_vector(63 downto 0); 
      TB57_60  : in std_logic_vector(63 downto 0); 
      TB61_64  : in std_logic_vector(63 downto 0); 
      TB65_68  : in std_logic_vector(63 downto 0); 
      TB69_72  : in std_logic_vector(63 downto 0); 
 
   FIRST  : in std_logic;     --High loads 
inputs 
   NEXTLAYER: in std_logic;     --High 
causes the previous layers outputs to become the next layers inputs 
   LAYERNUM : in std_logic_vector(7 downto 0); --Controls the 
bias node 
   NODE  : in std_logic_vector(7 downto 0); --Controls which node 
is being calculated 
   SQSH  : in std_logic;     --High 
squashes the output values 
      OUTVALUE : out std_logic_vector(63 downto 0); --output, 16 bits with 
zero padding 
      CLK      : in std_logic 
           ); 
end Squash; 
 
architecture Behavioral of Squash is 
component MULT18X18S 
    port (A : in STD_LOGIC_VECTOR (17 downto 0); 
          B : in STD_LOGIC_VECTOR (17 downto 0); 
   P     : out STD_LOGIC_VECTOR (35 downto 0);  
   R : in STD_LOGIC; 
   CE    : in STD_LOGIC; 
   C : in STD_LOGIC); 
end component; 
 signal NODECOUNT : std_logic_vector(7 downto 0); 
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  signal A1   : std_logic_vector(15 downto 0); 
  signal A2   : std_logic_vector(15 downto 0); 
  signal A3   : std_logic_vector(15 downto 0); 
  signal A4   : std_logic_vector(15 downto 0); 
  signal A5   : std_logic_vector(15 downto 0); 
  signal A6   : std_logic_vector(15 downto 0); 
  signal A7   : std_logic_vector(15 downto 0); 
  signal A8   : std_logic_vector(15 downto 0); 
  signal A9   : std_logic_vector(15 downto 0); 
  signal A10   : std_logic_vector(15 downto 0); 
  signal A11   : std_logic_vector(15 downto 0); 
  signal A12   : std_logic_vector(15 downto 0); 
  signal A13   : std_logic_vector(15 downto 0); 
  signal A14   : std_logic_vector(15 downto 0); 
  signal A15   : std_logic_vector(15 downto 0); 
  signal A16  : std_logic_vector(15 downto 0); 
  signal A17   : std_logic_vector(15 downto 0); 
  signal A18   : std_logic_vector(15 downto 0); 
  signal A19   : std_logic_vector(15 downto 0); 
  signal A20   : std_logic_vector(15 downto 0); 
  signal A21   : std_logic_vector(15 downto 0); 
  signal A22   : std_logic_vector(15 downto 0); 
  signal A23   : std_logic_vector(15 downto 0); 
  signal A24  : std_logic_vector(15 downto 0); 
  signal A25   : std_logic_vector(15 downto 0); 
  signal A26   : std_logic_vector(15 downto 0); 
  signal A27   : std_logic_vector(15 downto 0); 
  signal A28   : std_logic_vector(15 downto 0); 
  signal A29   : std_logic_vector(15 downto 0); 
  signal A30   : std_logic_vector(15 downto 0); 
  signal A31   : std_logic_vector(15 downto 0); 
  signal A32   : std_logic_vector(15 downto 0); 
  signal A33   : std_logic_vector(15 downto 0); 
  signal A34   : std_logic_vector(15 downto 0); 
  signal A35   : std_logic_vector(15 downto 0); 
  signal A36   : std_logic_vector(15 downto 0); 
  signal A37   : std_logic_vector(15 downto 0); 
  signal A38   : std_logic_vector(15 downto 0); 
  signal A39   : std_logic_vector(15 downto 0); 
  signal A40   : std_logic_vector(15 downto 0); 
  signal A41   : std_logic_vector(15 downto 0); 
  signal A42   : std_logic_vector(15 downto 0); 
  signal A43   : std_logic_vector(15 downto 0); 
  signal A44   : std_logic_vector(15 downto 0); 
  signal A45   : std_logic_vector(15 downto 0); 
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  signal A46   : std_logic_vector(15 downto 0); 
  signal A47   : std_logic_vector(15 downto 0); 
  signal A48  : std_logic_vector(15 downto 0); 
  signal A49   : std_logic_vector(15 downto 0); 
  signal A50   : std_logic_vector(15 downto 0); 
  signal A51   : std_logic_vector(15 downto 0); 
  signal A52   : std_logic_vector(15 downto 0); 
  signal A53   : std_logic_vector(15 downto 0); 
  signal A54   : std_logic_vector(15 downto 0); 
  signal A55   : std_logic_vector(15 downto 0); 
  signal A56   : std_logic_vector(15 downto 0); 
  signal A57   : std_logic_vector(15 downto 0); 
  signal A58   : std_logic_vector(15 downto 0); 
  signal A59   : std_logic_vector(15 downto 0); 
  signal A60   : std_logic_vector(15 downto 0); 
  signal A61   : std_logic_vector(15 downto 0); 
  signal A62   : std_logic_vector(15 downto 0); 
  signal A63   : std_logic_vector(15 downto 0); 
  signal A64   : std_logic_vector(15 downto 0); 
  signal A65   : std_logic_vector(15 downto 0); 
  signal A66   : std_logic_vector(15 downto 0); 
  signal A67   : std_logic_vector(15 downto 0); 
  signal A68  : std_logic_vector(15 downto 0); 
  signal A69   : std_logic_vector(15 downto 0); 
  signal A70   : std_logic_vector(15 downto 0);  
  signal A71   : std_logic_vector(15 downto 0); 
   
  signal  B1_4  : std_logic_vector(63 downto 0); 
     signal B5_8     : std_logic_vector(63 downto 0); 
     signal B9_12   : std_logic_vector(63 downto 0); 
     signal B13_16  : std_logic_vector(63 downto 0); 
     signal B17_20  : std_logic_vector(63 downto 0); 
     signal B21_24  : std_logic_vector(63 downto 0); 
     signal B25_28  : std_logic_vector(63 downto 0); 
     signal B29_32  : std_logic_vector(63 downto 0); 
     signal B33_36  : std_logic_vector(63 downto 0); 
     signal B37_40  : std_logic_vector(63 downto 0); 
     signal B41_44  : std_logic_vector(63 downto 0); 
     signal B45_48  : std_logic_vector(63 downto 0); 
     signal B49_52  : std_logic_vector(63 downto 0); 
     signal B53_56  : std_logic_vector(63 downto 0); 
     signal B57_60  : std_logic_vector(63 downto 0); 
     signal B61_64  : std_logic_vector(63 downto 0); 
     signal B65_68  : std_logic_vector(63 downto 0); 
     signal B69_72 : std_logic_vector(63 downto 0); 
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     signal  TTB1_4     : std_logic_vector(63 downto 0); 
     signal TTB5_8     : std_logic_vector(63 downto 0); 
     signal TTB9_12   : std_logic_vector(63 downto 0); 
     signal TTB13_16  : std_logic_vector(63 downto 0); 
     signal TTB17_20  : std_logic_vector(63 downto 0); 
     signal TTB21_24  : std_logic_vector(63 downto 0); 
     signal TTB25_28  : std_logic_vector(63 downto 0); 
     signal TTB29_32  : std_logic_vector(63 downto 0); 
     signal TTB33_36  : std_logic_vector(63 downto 0); 
     signal TTB37_40  : std_logic_vector(63 downto 0); 
     signal TTB41_44  : std_logic_vector(63 downto 0); 
     signal TTB45_48  : std_logic_vector(63 downto 0); 
     signal TTB49_52  : std_logic_vector(63 downto 0); 
     signal TTB53_56  : std_logic_vector(63 downto 0); 
     signal TTB57_60  : std_logic_vector(63 downto 0); 
     signal TTB61_64  : std_logic_vector(63 downto 0); 
     signal TTB65_68  : std_logic_vector(63 downto 0); 
     signal TTB69_72  : std_logic_vector(63 downto 0); 
   
  signal T1   : std_logic_vector(15 downto 0); 
  signal T2   : std_logic_vector(15 downto 0); 
  signal T3   : std_logic_vector(15 downto 0); 
  signal T4   : std_logic_vector(15 downto 0); 
  signal T5   : std_logic_vector(15 downto 0); 
  signal T6   : std_logic_vector(15 downto 0); 
  signal T7   : std_logic_vector(15 downto 0); 
  signal T8   : std_logic_vector(15 downto 0); 
  signal T9   : std_logic_vector(15 downto 0); 
  signal T10   : std_logic_vector(15 downto 0); 
  signal T11   : std_logic_vector(15 downto 0); 
  signal T12   : std_logic_vector(15 downto 0); 
  signal T13   : std_logic_vector(15 downto 0); 
  signal T14   : std_logic_vector(15 downto 0); 
  signal T15   : std_logic_vector(15 downto 0); 
  signal T16  : std_logic_vector(15 downto 0); 
  signal T17   : std_logic_vector(15 downto 0); 
  signal T18   : std_logic_vector(15 downto 0); 
  signal T19   : std_logic_vector(15 downto 0); 
  signal T20   : std_logic_vector(15 downto 0); 
  signal T21   : std_logic_vector(15 downto 0); 
  signal T22   : std_logic_vector(15 downto 0); 
  signal T23   : std_logic_vector(15 downto 0); 
  signal T24  : std_logic_vector(15 downto 0); 
  signal T25   : std_logic_vector(15 downto 0); 
  signal T26   : std_logic_vector(15 downto 0); 
  signal T27   : std_logic_vector(15 downto 0); 
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  signal T28   : std_logic_vector(15 downto 0); 
  signal T29   : std_logic_vector(15 downto 0); 
  signal T30   : std_logic_vector(15 downto 0); 
  signal T31   : std_logic_vector(15 downto 0); 
  signal T32   : std_logic_vector(15 downto 0); 
  signal T33   : std_logic_vector(15 downto 0); 
  signal T34   : std_logic_vector(15 downto 0); 
  signal T35   : std_logic_vector(15 downto 0); 
  signal T36   : std_logic_vector(15 downto 0); 
  signal T37   : std_logic_vector(15 downto 0); 
  signal T38   : std_logic_vector(15 downto 0); 
  signal T39   : std_logic_vector(15 downto 0); 
  signal T40   : std_logic_vector(15 downto 0); 
  signal T41   : std_logic_vector(15 downto 0); 
  signal T42   : std_logic_vector(15 downto 0); 
  signal T43   : std_logic_vector(15 downto 0); 
  signal T44   : std_logic_vector(15 downto 0); 
  signal T45   : std_logic_vector(15 downto 0); 
  signal T46   : std_logic_vector(15 downto 0); 
  signal T47   : std_logic_vector(15 downto 0); 
  signal T48  : std_logic_vector(15 downto 0); 
  signal T49   : std_logic_vector(15 downto 0); 
  signal T50   : std_logic_vector(15 downto 0); 
  signal T51   : std_logic_vector(15 downto 0); 
  signal T52   : std_logic_vector(15 downto 0); 
  signal T53   : std_logic_vector(15 downto 0); 
  signal T54   : std_logic_vector(15 downto 0); 
  signal T55   : std_logic_vector(15 downto 0); 
  signal T56   : std_logic_vector(15 downto 0); 
  signal T57   : std_logic_vector(15 downto 0); 
  signal T58   : std_logic_vector(15 downto 0); 
  signal T59   : std_logic_vector(15 downto 0); 
  signal T60   : std_logic_vector(15 downto 0); 
  signal T61   : std_logic_vector(15 downto 0); 
  signal T62   : std_logic_vector(15 downto 0); 
  signal T63   : std_logic_vector(15 downto 0); 
  signal T64   : std_logic_vector(15 downto 0); 
  signal T65   : std_logic_vector(15 downto 0); 
  signal T66   : std_logic_vector(15 downto 0); 
  signal T67   : std_logic_vector(15 downto 0); 
  signal T68  : std_logic_vector(15 downto 0); 
  signal T69   : std_logic_vector(15 downto 0); 
  signal T70   : std_logic_vector(15 downto 0);  
  signal T71   : std_logic_vector(15 downto 0); 
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  signal NODE0  : std_logic_vector(7 downto 0);    
  signal NODE1  : std_logic_vector(7 downto 0);  
  signal NODE2  : std_logic_vector(7 downto 0); 
 signal NODE3  : std_logic_vector(7 downto 0); 
 signal NODE4  : std_logic_vector(7 downto 0); 
 signal NODE5  : std_logic_vector(7 downto 0); 
 signal NODE6  : std_logic_vector(7 downto 0); 
 signal NODE7  : std_logic_vector(7 downto 0); 
 signal NODE8  : std_logic_vector(7 downto 0); 
 signal NODE9  : std_logic_vector(7 downto 0); 
 signal NODE10 : std_logic_vector(7 downto 0); 
 signal NODE11 : std_logic_vector(7 downto 0); 
 signal NODE12 : std_logic_vector(7 downto 0); 
 signal NODE13 : std_logic_vector(7 downto 0); 
 signal NODE14 : std_logic_vector(7 downto 0); 
 signal NODE15 : std_logic_vector(7 downto 0); 
 signal NODE16 : std_logic_vector(7 downto 0); 
 signal NODE17 : std_logic_vector(7 downto 0); 
 signal NODE18 : std_logic_vector(7 downto 0); 
 signal NODE19 : std_logic_vector(7 downto 0); 
 signal NODE20 : std_logic_vector(7 downto 0); 
 signal NODE21 : std_logic_vector(7 downto 0); 
 
  signal TC1   : std_logic_vector(35 downto 0); 
  signal TC2   : std_logic_vector(35 downto 0); 
  signal TC3   : std_logic_vector(35 downto 0); 
  signal TC4   : std_logic_vector(35 downto 0); 
  signal TC5   : std_logic_vector(35 downto 0); 
  signal TC6   : std_logic_vector(35 downto 0); 
  signal TC7   : std_logic_vector(35 downto 0); 
  signal TC8   : std_logic_vector(35 downto 0); 
  signal TC9   : std_logic_vector(35 downto 0); 
  signal TC10   : std_logic_vector(35 downto 0); 
  signal TC11   : std_logic_vector(35 downto 0); 
  signal TC12   : std_logic_vector(35 downto 0); 
  signal TC13   : std_logic_vector(35 downto 0); 
  signal TC14   : std_logic_vector(35 downto 0); 
  signal TC15   : std_logic_vector(35 downto 0); 
  signal TC16  : std_logic_vector(35 downto 0); 
  signal TC17   : std_logic_vector(35 downto 0); 
  signal TC18   : std_logic_vector(35 downto 0); 
  signal TC19   : std_logic_vector(35 downto 0); 
  signal TC20   : std_logic_vector(35 downto 0); 
  signal TC21   : std_logic_vector(35 downto 0); 
  signal TC22   : std_logic_vector(35 downto 0); 
  signal TC23   : std_logic_vector(35 downto 0); 
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  signal TC24  : std_logic_vector(35 downto 0); 
  signal TC25   : std_logic_vector(35 downto 0); 
  signal TC26   : std_logic_vector(35 downto 0); 
  signal TC27   : std_logic_vector(35 downto 0); 
  signal TC28   : std_logic_vector(35 downto 0); 
  signal TC29   : std_logic_vector(35 downto 0); 
  signal TC30   : std_logic_vector(35 downto 0); 
  signal TC31   : std_logic_vector(35 downto 0); 
  signal TC32   : std_logic_vector(35 downto 0); 
  signal TC33   : std_logic_vector(35 downto 0); 
  signal TC34   : std_logic_vector(35 downto 0); 
  signal TC35   : std_logic_vector(35 downto 0); 
  signal TC36   : std_logic_vector(35 downto 0); 
  signal TC37   : std_logic_vector(35 downto 0); 
  signal TC38   : std_logic_vector(35 downto 0); 
  signal TC39   : std_logic_vector(35 downto 0); 
  signal TC40   : std_logic_vector(35 downto 0); 
  signal TC41   : std_logic_vector(35 downto 0); 
  signal TC42   : std_logic_vector(35 downto 0); 
  signal TC43   : std_logic_vector(35 downto 0); 
  signal TC44   : std_logic_vector(35 downto 0); 
  signal TC45   : std_logic_vector(35 downto 0); 
  signal TC46   : std_logic_vector(35 downto 0); 
  signal TC47   : std_logic_vector(35 downto 0); 
  signal TC48  : std_logic_vector(35 downto 0); 
  signal TC49   : std_logic_vector(35 downto 0); 
  signal TC50   : std_logic_vector(35 downto 0); 
  signal TC51   : std_logic_vector(35 downto 0); 
  signal TC52   : std_logic_vector(35 downto 0); 
  signal TC53   : std_logic_vector(35 downto 0); 
  signal TC54   : std_logic_vector(35 downto 0); 
  signal TC55   : std_logic_vector(35 downto 0); 
  signal TC56   : std_logic_vector(35 downto 0); 
  signal TC57   : std_logic_vector(35 downto 0); 
  signal TC58   : std_logic_vector(35 downto 0); 
  signal TC59   : std_logic_vector(35 downto 0); 
  signal TC60   : std_logic_vector(35 downto 0); 
  signal TC61   : std_logic_vector(35 downto 0); 
  signal TC62   : std_logic_vector(35 downto 0); 
  signal TC63   : std_logic_vector(35 downto 0); 
  signal TC64   : std_logic_vector(35 downto 0); 
  signal TC65   : std_logic_vector(35 downto 0); 
  signal TC66   : std_logic_vector(35 downto 0); 
  signal TC67   : std_logic_vector(35 downto 0); 
  signal TC68  : std_logic_vector(35 downto 0); 
  signal TC69   : std_logic_vector(35 downto 0); 
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  signal TC70   : std_logic_vector(35 downto 0);  
  signal TC71   : std_logic_vector(35 downto 0); 
 
  signal C1   : std_logic_vector(43 downto 0); 
  signal C2   : std_logic_vector(43 downto 0); 
  signal C3   : std_logic_vector(43 downto 0); 
  signal C4   : std_logic_vector(43 downto 0); 
  signal C5   : std_logic_vector(43 downto 0); 
  signal C6   : std_logic_vector(43 downto 0); 
  signal C7   : std_logic_vector(43 downto 0); 
  signal C8   : std_logic_vector(43 downto 0); 
  signal C9   : std_logic_vector(43 downto 0); 
  signal C10   : std_logic_vector(43 downto 0); 
  signal C11   : std_logic_vector(43 downto 0); 
  signal C12   : std_logic_vector(43 downto 0); 
  signal C13   : std_logic_vector(43 downto 0); 
  signal C14   : std_logic_vector(43 downto 0); 
  signal C15   : std_logic_vector(43 downto 0); 
  signal C16  : std_logic_vector(43 downto 0); 
  signal C17   : std_logic_vector(43 downto 0); 
  signal C18   : std_logic_vector(43 downto 0); 
  signal C19   : std_logic_vector(43 downto 0); 
  signal C20   : std_logic_vector(43 downto 0); 
  signal C21   : std_logic_vector(43 downto 0); 
  signal C22   : std_logic_vector(43 downto 0); 
  signal C23   : std_logic_vector(43 downto 0); 
  signal C24  : std_logic_vector(43 downto 0); 
  signal C25   : std_logic_vector(43 downto 0); 
  signal C26   : std_logic_vector(43 downto 0); 
  signal C27   : std_logic_vector(43 downto 0); 
  signal C28   : std_logic_vector(43 downto 0); 
  signal C29   : std_logic_vector(43 downto 0); 
  signal C30   : std_logic_vector(43 downto 0); 
  signal C31   : std_logic_vector(43 downto 0); 
  signal C32   : std_logic_vector(43 downto 0); 
  signal C33   : std_logic_vector(43 downto 0); 
  signal C34   : std_logic_vector(43 downto 0); 
  signal C35   : std_logic_vector(43 downto 0); 
  signal C36   : std_logic_vector(43 downto 0); 
  signal C37   : std_logic_vector(43 downto 0); 
  signal C38   : std_logic_vector(43 downto 0); 
  signal C39   : std_logic_vector(43 downto 0); 
  signal C40   : std_logic_vector(43 downto 0); 
  signal C41   : std_logic_vector(43 downto 0); 
  signal C42   : std_logic_vector(43 downto 0); 
  signal C43   : std_logic_vector(43 downto 0); 
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  signal C44   : std_logic_vector(43 downto 0); 
  signal C45   : std_logic_vector(43 downto 0); 
  signal C46   : std_logic_vector(43 downto 0); 
  signal C47   : std_logic_vector(43 downto 0); 
  signal C48  : std_logic_vector(43 downto 0); 
  signal C49   : std_logic_vector(43 downto 0); 
  signal C50   : std_logic_vector(43 downto 0); 
  signal C51   : std_logic_vector(43 downto 0); 
  signal C52   : std_logic_vector(43 downto 0); 
  signal C53   : std_logic_vector(43 downto 0); 
  signal C54   : std_logic_vector(43 downto 0); 
  signal C55   : std_logic_vector(43 downto 0); 
  signal C56   : std_logic_vector(43 downto 0); 
  signal C57   : std_logic_vector(43 downto 0); 
  signal C58   : std_logic_vector(43 downto 0); 
  signal C59   : std_logic_vector(43 downto 0); 
  signal C60   : std_logic_vector(43 downto 0); 
  signal C61   : std_logic_vector(43 downto 0); 
  signal C62   : std_logic_vector(43 downto 0); 
  signal C63   : std_logic_vector(43 downto 0); 
  signal C64   : std_logic_vector(43 downto 0); 
  signal C65   : std_logic_vector(43 downto 0); 
  signal C66   : std_logic_vector(43 downto 0); 
  signal C67   : std_logic_vector(43 downto 0); 
  signal C68  : std_logic_vector(43 downto 0); 
  signal C69   : std_logic_vector(43 downto 0); 
  signal C70   : std_logic_vector(43 downto 0);  
  signal C71   : std_logic_vector(43 downto 0); 
 
 signal C1_2       : std_logic_vector(43 downto 0); 
 signal C3_4        : std_logic_vector(43 downto 0); 
 signal C5_6        : std_logic_vector(43 downto 0); 
 signal C7_8        : std_logic_vector(43 downto 0); 
 signal C9_10     : std_logic_vector(43 downto 0); 
 signal C11_12    : std_logic_vector(43 downto 0); 
 signal C13_14    : std_logic_vector(43 downto 0); 
 signal C15_16    : std_logic_vector(43 downto 0); 
 signal C17_18    : std_logic_vector(43 downto 0); 
 signal C19_20    : std_logic_vector(43 downto 0); 
 signal C21_22    : std_logic_vector(43 downto 0); 
 signal C23_24    : std_logic_vector(43 downto 0); 
 signal C25_26    : std_logic_vector(43 downto 0); 
 signal C27_28    : std_logic_vector(43 downto 0); 
 signal C29_30    : std_logic_vector(43 downto 0); 
 signal C31_32    : std_logic_vector(43 downto 0); 
 signal C33_34    : std_logic_vector(43 downto 0); 
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 signal C35_36    : std_logic_vector(43 downto 0); 
 signal C37_38    : std_logic_vector(43 downto 0); 
 signal C39_40    : std_logic_vector(43 downto 0); 
 signal C41_42    : std_logic_vector(43 downto 0); 
 signal C43_44    : std_logic_vector(43 downto 0); 
 signal C45_46    : std_logic_vector(43 downto 0); 
 signal C47_48    : std_logic_vector(43 downto 0); 
 signal C49_50    : std_logic_vector(43 downto 0); 
 signal C51_52    : std_logic_vector(43 downto 0); 
 signal C53_54    : std_logic_vector(43 downto 0); 
 signal C55_56    : std_logic_vector(43 downto 0); 
 signal C57_58    : std_logic_vector(43 downto 0); 
 signal C59_60    : std_logic_vector(43 downto 0); 
 signal C61_62    : std_logic_vector(43 downto 0); 
 signal C63_64    : std_logic_vector(43 downto 0); 
 signal C65_66    : std_logic_vector(43 downto 0); 
 signal C67_68    : std_logic_vector(43 downto 0); 
 signal C69_70    : std_logic_vector(43 downto 0); 
 signal C71_N     : std_logic_vector(43 downto 0); 
 
 signal C1_4        : std_logic_vector(43 downto 0); 
 signal C5_8        : std_logic_vector(43 downto 0); 
 signal C9_12     : std_logic_vector(43 downto 0); 
 signal C13_16    : std_logic_vector(43 downto 0); 
 signal C17_20    : std_logic_vector(43 downto 0); 
 signal C21_24    : std_logic_vector(43 downto 0); 
 signal C25_28    : std_logic_vector(43 downto 0); 
 signal C29_32    : std_logic_vector(43 downto 0); 
 signal C33_36    : std_logic_vector(43 downto 0); 
 signal C37_40    : std_logic_vector(43 downto 0); 
 signal C41_44    : std_logic_vector(43 downto 0); 
 signal C45_48    : std_logic_vector(43 downto 0); 
 signal C49_52    : std_logic_vector(43 downto 0); 
 signal C53_56    : std_logic_vector(43 downto 0); 
 signal C57_60    : std_logic_vector(43 downto 0); 
 signal C61_64    : std_logic_vector(43 downto 0); 
 signal C65_68    : std_logic_vector(43 downto 0); 
 signal C69_71    : std_logic_vector(43 downto 0); 
 
 signal C1_8       : std_logic_vector(43 downto 0); 
 signal C9_16     : std_logic_vector(43 downto 0); 
 signal C17_24    : std_logic_vector(43 downto 0); 
 signal C25_32    : std_logic_vector(43 downto 0); 
 signal C33_40    : std_logic_vector(43 downto 0); 
 signal C41_48    : std_logic_vector(43 downto 0); 
 signal C49_56    : std_logic_vector(43 downto 0); 
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 signal C57_64    : std_logic_vector(43 downto 0); 
 signal C65_71    : std_logic_vector(43 downto 0); 
 
 signal C1_16     : std_logic_vector(43 downto 0); 
 signal C17_32    : std_logic_vector(43 downto 0); 
 signal C33_48    : std_logic_vector(43 downto 0); 
 signal C49_64    : std_logic_vector(43 downto 0); 
 signal C65_A     : std_logic_vector(43 downto 0); 
 
 signal C1_32     : std_logic_vector(43 downto 0); 
 signal C33_64    : std_logic_vector(43 downto 0); 
 signal C65_B     : std_logic_vector(43 downto 0); 
 
 signal C1_64     : std_logic_vector(43 downto 0); 
 signal C65_C     : std_logic_vector(43 downto 0); 
 
 signal SUM      : std_logic_vector(43 downto 0); 
  
  
 --******************************************* 
 --*         SQUASHING VARIABLES             * 
 --******************************************* 
 signal INVALUE11 : std_logic_vector(35 downto 0); 
 signal INVALUE12 : std_logic_vector(15 downto 0); 
 signal INVALUE13 : std_logic_vector(15 downto 0); 
  
 signal SIGN11  : std_logic; 
 signal SIGN12  : std_logic; 
 signal SIGN13  : std_logic; 
 signal SIGN14  : std_logic;  
 signal SIGN15  : std_logic; 
 signal SIGN16  : std_logic; 
 signal SIGN17  : std_logic;  
 signal SIGN18  : std_logic; 
 signal SIGN19  : std_logic; 
 signal SIGN20  : std_logic; 
  
 signal SEG12  : std_logic_vector(2 downto 0); 
 signal SEG13  : std_logic_vector(2 downto 0); 
 signal SEG14  : std_logic_vector(2 downto 0); 
 signal SEG15  : std_logic_vector(2 downto 0); 
 signal SEG16  : std_logic_vector(2 downto 0);  
 signal SEG17  : std_logic_vector(2 downto 0);  
 signal SEG18  : std_logic_vector(2 downto 0); 
 signal SEG19  : std_logic_vector(2 downto 0);   
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 signal OFFSET13  : std_logic_vector(15 downto 0); 
 signal CENTER14  : std_logic_vector(15 downto 0); 
 signal ORDER1ST14 : std_logic_vector(15 downto 0); 
 signal ORDER2ND15 : std_logic_vector(15 downto 0); 
 signal ORDER2ND16 : std_logic_vector(15 downto 0); 
 signal ORDER0TH15 : std_logic_vector(15 downto 0); 
 signal ORDER0TH16 : std_logic_vector(15 downto 0); 
  
 signal SUM15  : std_logic_vector(35 downto 0); 
 signal SUM16  : std_logic_vector(35 downto 0); 
 signal SUM17  : std_logic_vector(15 downto 0); 
 signal SUM18  : std_logic_vector(15 downto 0); 
  
 signal SQUARE15  : std_logic_vector(35 downto 0); 
 signal SQUARE16 : std_logic_vector(35 downto 0); 
  
 signal SQRSCALE17 : std_logic_vector(35 downto 0); 
 signal SQRSCALE18 : std_logic_vector(35 downto 0); 
  
 signal TEMP19  : std_logic_vector(15 downto 0); 
 signal TEMP20  : std_logic_vector(15 downto 0); 
  
 signal REALOUT  : std_logic_vector(15 downto 0); 
  
 --******************************************* 
 --*       END SQUASHING VARIABLES           * 
 --*******************************************  
  
 --******************************************* 
 --*         TO SQSH OR NOT TO SQSH          * 
 --******************************************* 
 signal SQSH0   : std_logic; 
 signal SQSH1   : std_logic; 
 signal SQSH2   : std_logic; 
 signal SQSH3   : std_logic; 
 signal SQSH4   : std_logic; 
 signal SQSH5   : std_logic; 
 signal SQSH6   : std_logic; 
 signal SQSH7   : std_logic; 
 signal SQSH8   : std_logic; 
 signal SQSH9   : std_logic; 
 signal SQSH10  : std_logic; 
 signal SQSH11  : std_logic; 
 signal SQSH12  : std_logic; 
 signal SQSH13  : std_logic; 
 signal SQSH14  : std_logic; 
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 signal SQSH15  : std_logic; 
 signal SQSH16  : std_logic; 
 signal SQSH17  : std_logic; 
 signal SQSH18  : std_logic; 
 signal SQSH19  : std_logic; 
 signal SQSH20  : std_logic; 
 signal SQSHOUT  : std_logic; 
  
 signal UNSQSH11 : std_logic_vector(35 downto 0);  
 signal UNSQSH12 : std_logic_vector(35 downto 0);  
 signal UNSQSH13 : std_logic_vector(35 downto 0);  
 signal UNSQSH14 : std_logic_vector(35 downto 0);  
 signal UNSQSH15 : std_logic_vector(35 downto 0);  
 signal UNSQSH16 : std_logic_vector(35 downto 0);  
 signal UNSQSH17 : std_logic_vector(35 downto 0);  
 signal UNSQSH18 : std_logic_vector(35 downto 0);  
 signal UNSQSH19 : std_logic_vector(35 downto 0); 
 signal UNSQSH20 : std_logic_vector(35 downto 0);  
 signal UNSQSHOUT : std_logic_vector(35 downto 0); 
  
 signal TOUT  : std_logic_vector(15 downto 0);  
 --******************************************* 
 --*       END TO SQSH OR NOT TO SQSH        * 
 --*******************************************   
  
  
begin 
 --weights multiplied by the previous layer 
 U_MULT18X18_1: MULT18X18S 
 port map(A=> A1(15) & A1(15) & A1, B=> B1_4(63) & B1_4(63) & B1_4(63 
downto 48), P=> TC1,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_2: MULT18X18S 
 port map(A=> A2(15) & A2(15) & A2, B=> B1_4(47) & B1_4(47) & B1_4(47 
downto 32), P=> TC2,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_3: MULT18X18S 
 port map(A=> A3(15) & A3(15) & A3, B=> B1_4(31) & B1_4(31) & B1_4(31 
downto 16), P=> TC3,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_4: MULT18X18S 
 port map(A=> A4(15) & A4(15) & A4, B=> B1_4(15) & B1_4(15) & B1_4(15 
downto 0), P=> TC4,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_5: MULT18X18S 
 port map(A=> A5(15) & A5(15) & A5, B=> B5_8(63) & B5_8(63) & B5_8(63 
downto 48), P=> TC5,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_6: MULT18X18S 
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 port map(A=> A6(15) & A6(15) & A6, B=> B5_8(47) & B5_8(47) & B5_8(47 
downto 32), P=> TC6,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_7: MULT18X18S 
 port map(A=> A7(15) & A7(15) & A7, B=> B5_8(31) & B5_8(31) & B5_8(31 
downto 16), P=> TC7,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_8: MULT18X18S 
 port map(A=> A8(15) & A8(15) & A8, B=> B5_8(15) & B5_8(15) & B5_8(15 
downto 0), P=> TC8,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_9: MULT18X18S 
 port map(A=> A9(15) & A9(15) & A9, B=> B9_12(63) & B9_12(63) & 
B9_12(63 downto 48), P=> TC9,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_10: MULT18X18S 
 port map(A=> A10(15) & A10(15) & A10, B=> B9_12(47) & B9_12(47) & 
B9_12(47 downto 32), P=> TC10,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_11: MULT18X18S 
 port map(A=> A11(15) & A11(15) & A11, B=> B9_12(31) & B9_12(31) & 
B9_12(31 downto 16), P=> TC11,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_12: MULT18X18S 
 port map(A=> A12(15) & A12(15) & A12, B=> B9_12(15) & B9_12(15) & 
B9_12(15 downto 0), P=> TC12,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_13: MULT18X18S 
 port map(A=> A13(15) & A13(15) & A13, B=> B13_16(63) & B13_16(63) & 
B13_16(63 downto 48), P=> TC13,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_14: MULT18X18S 
 port map(A=> A14(15) & A14(15) & A14, B=> B13_16(47) & B13_16(47) & 
B13_16(47 downto 32), P=> TC14,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_15: MULT18X18S 
 port map(A=> A15(15) & A15(15) & A15, B=> B13_16(31) & B13_16(31) & 
B13_16(31 downto 16), P=> TC15,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_16: MULT18X18S 
 port map(A=> A16(15) & A16(15) & A16, B=> B13_16(15) & B13_16(15) & 
B13_16(15 downto 0), P=> TC16,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_17: MULT18X18S 
 port map(A=> A17(15) & A17(15) & A17, B=> B17_20(63) & B17_20(63) & 
B17_20(63 downto 48), P=> TC17,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_18: MULT18X18S 
 port map(A=> A18(15) & A18(15) & A18, B=> B17_20(47) & B17_20(47) & 
B17_20(47 downto 32), P=> TC18,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_19: MULT18X18S 
 port map(A=> A19(15) & A19(15) & A19, B=> B17_20(31) & B17_20(31) & 
B17_20(31 downto 16), P=> TC19,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_20: MULT18X18S 
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 port map(A=> A20(15) & A20(15) & A20, B=> B17_20(15) & B17_20(15) & 
B17_20(15 downto 0), P=> TC20,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_21: MULT18X18S 
 port map(A=> A21(15) & A21(15) & A21, B=> B21_24(63) & B21_24(63) & 
B21_24(63 downto 48), P=> TC21,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_22: MULT18X18S 
 port map(A=> A22(15) & A22(15) & A22, B=> B21_24(47) & B21_24(47) & 
B21_24(47 downto 32), P=> TC22,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_23: MULT18X18S 
 port map(A=> A23(15) & A23(15) & A23, B=> B21_24(31) & B21_24(31) & 
B21_24(31 downto 16), P=> TC23,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_24: MULT18X18S 
 port map(A=> A24(15) & A24(15) & A24, B=> B21_24(15) & B21_24(15) & 
B21_24(15 downto 0), P=> TC24,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_25: MULT18X18S 
 port map(A=> A25(15) & A25(15) & A25, B=> B25_28(63) & B25_28(63) & 
B25_28(63 downto 48), P=> TC25,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_26: MULT18X18S 
 port map(A=> A26(15) & A26(15) & A26, B=> B25_28(47) & B25_28(47) & 
B25_28(47 downto 32), P=> TC26,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_27: MULT18X18S 
 port map(A=> A27(15) & A27(15) & A27, B=> B25_28(31) & B25_28(31) & 
B25_28(31 downto 16), P=> TC27,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_28: MULT18X18S 
 port map(A=> A28(15) & A28(15) & A28, B=> B25_28(15) & B25_28(15) & 
B25_28(15 downto 0), P=> TC28,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_29: MULT18X18S 
 port map(A=> A29(15) & A29(15) & A29, B=> B29_32(63) & B29_32(63) & 
B29_32(63 downto 48), P=> TC29,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_30: MULT18X18S 
 port map(A=> A30(15) & A30(15) & A30, B=> B29_32(47) & B29_32(47) & 
B29_32(47 downto 32), P=> TC30,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_31: MULT18X18S 
 port map(A=> A31(15) & A31(15) & A31, B=> B29_32(31) & B29_32(31) & 
B29_32(31 downto 16), P=> TC31,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_32: MULT18X18S 
 port map(A=> A32(15) & A32(15) & A32, B=> B29_32(15) & B29_32(15) & 
B29_32(15 downto 0), P=> TC32,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_33: MULT18X18S 
 port map(A=> A33(15) & A33(15) & A33, B=> B33_36(63) & B33_36(63) & 
B33_36(63 downto 48), P=> TC33,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_34: MULT18X18S 
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 port map(A=> A34(15) & A34(15) & A34, B=> B33_36(47) & B33_36(47) & 
B33_36(47 downto 32), P=> TC34,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_35: MULT18X18S 
 port map(A=> A35(15) & A35(15) & A35, B=> B33_36(31) & B33_36(31) & 
B33_36(31 downto 16), P=> TC35,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_36: MULT18X18S 
 port map(A=> A36(15) & A36(15) & A36, B=> B33_36(15) & B33_36(15) & 
B33_36(15 downto 0), P=> TC36,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_37: MULT18X18S 
 port map(A=> A37(15) & A37(15) & A37, B=> B37_40(63) & B37_40(63) & 
B37_40(63 downto 48), P=> TC37,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_38: MULT18X18S 
 port map(A=> A38(15) & A38(15) & A38, B=> B37_40(47) & B37_40(47) & 
B37_40(47 downto 32), P=> TC38,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_39: MULT18X18S 
 port map(A=> A39(15) & A39(15) & A39, B=> B37_40(31) & B37_40(31) & 
B37_40(31 downto 16), P=> TC39,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_40: MULT18X18S 
 port map(A=> A40(15) & A40(15) & A40, B=> B37_40(15) & B37_40(15) & 
B37_40(15 downto 0), P=> TC40,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_41: MULT18X18S 
  
 port map(A=> A41(15) & A41(15) & A41, B=> B41_44(63) & B41_44(63) & 
B41_44(63 downto 48), P=> TC41,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_42: MULT18X18S 
 port map(A=> A42(15) & A42(15) & A42, B=> B41_44(47) & B41_44(47) & 
B41_44(47 downto 32), P=> TC42,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_43: MULT18X18S 
 port map(A=> A43(15) & A43(15) & A43, B=> B41_44(31) & B41_44(31) & 
B41_44(31 downto 16), P=> TC43,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_44: MULT18X18S 
 port map(A=> A44(15) & A44(15) & A44, B=> B41_44(15) & B41_44(15) & 
B41_44(15 downto 0), P=> TC44,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_45: MULT18X18S 
 port map(A=> A45(15) & A45(15) & A45, B=> B45_48(63) & B45_48(63) & 
B45_48(63 downto 48), P=> TC45,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_46: MULT18X18S 
 port map(A=> A46(15) & A46(15) & A46, B=> B45_48(47) & B45_48(47) & 
B45_48(47 downto 32), P=> TC46,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_47: MULT18X18S 
 port map(A=> A47(15) & A47(15) & A47, B=> B45_48(31) & B45_48(31) & 
B45_48(31 downto 16), P=> TC47,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_48: MULT18X18S 
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 port map(A=> A48(15) & A48(15) & A48, B=> B45_48(15) & B45_48(15) & 
B45_48(15 downto 0), P=> TC48,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_49: MULT18X18S 
 port map(A=> A49(15) & A49(15) & A49, B=> B49_52(63) & B49_52(63) & 
B49_52(63 downto 48), P=> TC49,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_50: MULT18X18S 
 port map(A=> A50(15) & A50(15) & A50, B=> B49_52(47) & B49_52(47) & 
B49_52(47 downto 32), P=> TC50,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_51: MULT18X18S 
 port map(A=> A51(15) & A51(15) & A51, B=> B49_52(31) & B49_52(31) & 
B49_52(31 downto 16), P=> TC51,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_52: MULT18X18S 
 port map(A=> A52(15) & A52(15) & A52, B=> B49_52(15) & B49_52(15) & 
B49_52(15 downto 0), P=> TC52,R=>'0',C=>CLK,CE=>'1'); 
  
 U_MULT18X18_53: MULT18X18S 
 port map(A=> A53(15) & A53(15) & A53, B=> B53_56(63) & B53_56(63) & 
B53_56(63 downto 48), P=> TC53,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_54: MULT18X18S 
 port map(A=> A54(15) & A54(15) & A54, B=> B53_56(47) & B53_56(47) & 
B53_56(47 downto 32), P=> TC54,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_55: MULT18X18S 
 port map(A=> A55(15) & A55(15) & A55, B=> B53_56(31) & B53_56(31) & 
B53_56(31 downto 16), P=> TC55,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_56: MULT18X18S 
 port map(A=> A56(15) & A56(15) & A56, B=> B53_56(15) & B53_56(15) & 
B53_56(15 downto 0), P=> TC56,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_57: MULT18X18S 
  
 port map(A=> A57(15) & A57(15) & A57, B=> B57_60(63) & B57_60(63) & 
B57_60(63 downto 48), P=> TC57,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_58: MULT18X18S 
 port map(A=> A58(15) & A58(15) & A58, B=> B57_60(47) & B57_60(47) & 
B57_60(47 downto 32), P=> TC58,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_59: MULT18X18S 
 port map(A=> A59(15) & A59(15) & A59, B=> B57_60(31) & B57_60(31) & 
B57_60(31 downto 16), P=> TC59,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_60: MULT18X18S 
 port map(A=> A60(15) & A60(15) & A60, B=> B57_60(15) & B57_60(15) & 
B57_60(15 downto 0), P=> TC60,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_61: MULT18X18S 
  
 port map(A=> A61(15) & A61(15) & A61, B=> B61_64(63) & B61_64(63) & 
B61_64(63 downto 48), P=> TC61,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_62: MULT18X18S 
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 port map(A=> A62(15) & A62(15) & A62, B=> B61_64(47) & B61_64(47) & 
B61_64(47 downto 32), P=> TC62,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_63: MULT18X18S 
 port map(A=> A63(15) & A63(15) & A63, B=> B61_64(31) & B61_64(31) & 
B61_64(31 downto 16), P=> TC63,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_64: MULT18X18S 
 port map(A=> A64(15) & A64(15) & A64, B=> B61_64(15) & B61_64(15) & 
B61_64(15 downto 0), P=> TC64,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_65: MULT18X18S 
  
 port map(A=> A65(15) & A65(15) & A65, B=> B65_68(63) & B65_68(63) & 
B65_68(63 downto 48), P=> TC65,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_66: MULT18X18S 
 port map(A=> A66(15) & A66(15) & A66, B=> B65_68(47) & B65_68(47) & 
B65_68(47 downto 32), P=> TC66,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_67: MULT18X18S 
 port map(A=> A67(15) & A67(15) & A67, B=> B65_68(31) & B65_68(31) & 
B65_68(31 downto 16), P=> TC67,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_68: MULT18X18S 
 port map(A=> A68(15) & A68(15) & A68, B=> B65_68(15) & B65_68(15) & 
B65_68(15 downto 0), P=> TC68,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_69: MULT18X18S 
  
 port map(A=> A69(15) & A69(15) & A69, B=> B69_72(63) & B69_72(63) & 
B69_72(63 downto 48), P=> TC69,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_70: MULT18X18S 
 port map(A=> A70(15) & A70(15) & A70, B=> B69_72(47) & B69_72(47) & 
B69_72(47 downto 32), P=> TC70,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_71: MULT18X18S 
 port map(A=> A71(15) & A71(15) & A71, B=> B69_72(31) & B69_72(31) & 
B69_72(31 downto 16), P=> TC71,R=>'0',C=>CLK,CE=>'1'); 
 
--SQUASHING MULTIPLIERS 
 U_MULT18X18_A: MULT18X18S 
 port map(A=> CENTER14(15) & CENTER14(15) & CENTER14, B=> "00" & 
ORDER1ST14, P=> SUM15,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_B: MULT18X18S 
 port map(A=> CENTER14(15) & CENTER14(15) & CENTER14, B=> 
CENTER14(15) & CENTER14(15) & CENTER14, P=> 
SQUARE15,R=>'0',C=>CLK,CE=>'1'); 
 U_MULT18X18_C: MULT18X18S 
 port map(A=>"00" & SQUARE16(31 downto 16) , B=>"00" & ORDER2ND16, 
P=> SQRSCALE17,R=>'0',C=>CLK,CE=>'1'); 
--END SQUASHING MULTIPLIERS 
 
 regN0: process(clk) is 
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 begin 
  if(clk'event and clk ='1') then 
   NODE0 <= NODE;  --hold node 
   SQSH0 <= SQSH;  --hold sqsh 
    
  TTB1_4    <=  TB1_4; --hold weights to maintain timing 
      TTB5_8    <=  TB5_8; 
      TTB9_12   <=  TB9_12; 
      TTB13_16  <=  TB13_16; 
      TTB17_20  <=  TB17_20; 
      TTB21_24  <=  TB21_24; 
      TTB25_28  <=  TB25_28; 
      TTB29_32  <=  TB29_32; 
      TTB33_36  <=  TB33_36; 
      TTB37_40  <=  TB37_40; 
      TTB41_44  <=  TB41_44; 
      TTB45_48  <=  TB45_48; 
      TTB49_52  <=  TB49_52; 
      TTB53_56  <=  TB53_56; 
      TTB57_60  <=  TB57_60; 
      TTB61_64  <=  TB61_64; 
      TTB65_68  <=  TB65_68; 
      TTB69_72  <=  TB69_72; 
     end if; 
    end process; 
 
 
 reg0: process(clk) is 
 begin 
  if(clk'event and clk ='1') then 
   --Load the inputs if calculating the first layer. 
   if(FIRST = '1') then 
    A1 <= IN1(15 downto 0); 
    A2 <= IN2(15 downto 0); 
    A3 <= IN3(15 downto 0); 
    A4 <= IN4(15 downto 0); 
    A5 <= IN5(15 downto 0); 
    A6 <= IN6(15 downto 0); 
    A7 <= IN7(15 downto 0); 
    A8 <= IN8(15 downto 0); 
    A9 <= IN9(15 downto 0); 
    A10 <= IN10(15 downto 0); 
    A11 <= IN11(15 downto 0); 
    A12 <= IN12(15 downto 0); 
    A13 <= IN13(15 downto 0); 
    A14 <= IN14(15 downto 0); 
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    A15 <= IN15(15 downto 0); 
    A16 <= IN16(15 downto 0); 
    A17 <= IN17(15 downto 0); 
    A18 <= IN18(15 downto 0); 
    A19 <= IN19(15 downto 0); 
    A20 <= IN20(15 downto 0); 
    A21 <= IN21(15 downto 0); 
    A22 <= IN22(15 downto 0); 
    A23 <= IN23(15 downto 0); 
    A24 <= IN24(15 downto 0); 
    A25 <= IN25(15 downto 0); 
    A26 <= IN26(15 downto 0); 
    A27 <= IN27(15 downto 0); 
    A28 <= X"0400"; 
    A29 <= X"0000"; 
    A30 <= X"0000"; 
    A31 <= X"0000"; 
    A32 <= X"0000"; 
    A33 <= X"0000"; 
    A34 <= X"0000"; 
    A35 <= X"0000"; 
    A36 <= X"0000"; 
    A37 <= X"0000"; 
    A38 <= X"0000"; 
    A39 <= X"0000"; 
    A40 <= X"0000"; 
    A41 <= X"0000"; 
    A42 <= X"0000"; 
    A43 <= X"0000"; 
    A44 <= X"0000"; 
    A45 <= X"0000"; 
    A46 <= X"0000"; 
    A47 <= X"0000"; 
    A48 <= X"0000"; 
    A49 <= X"0000"; 
    A50 <= X"0000"; 
    A51 <= X"0000"; 
    A52 <= X"0000"; 
    A53 <= X"0000"; 
    A54 <= X"0000"; 
    A55 <= X"0000"; 
    A56 <= X"0000"; 
    A57 <= X"0000"; 
    A58 <= X"0000"; 
    A59 <= X"0000"; 
    A60 <= X"0000"; 
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    A61 <= X"0000"; 
    A62 <= X"0000"; 
    A63 <= X"0000"; 
    A64 <= X"0000"; 
    A65 <= X"0000"; 
    A66 <= X"0000"; 
    A67 <= X"0000"; 
    A68 <= X"0000"; 
    A69 <= X"0000"; 
    A70 <= X"0000"; 
    A71 <= X"0000"; 
   --Move the stored results from previous layer to be inputs of next 
layer 
   elsif(NEXTLAYER = '1') then 
    A1 <= T1; 
    A2 <= T2; 
    A3 <= T3; 
    A4 <= T4; 
    A5 <= T5; 
    A6 <= T6; 
    A7 <= T7; 
    A8 <= T8; 
    A9 <= T9; 
    A10 <= T10; 
    A11 <= T11; 
    A12 <= T12; 
    A13 <= T13; 
    A14 <= T14; 
    A15 <= T15; 
    A16 <= T16; 
    A17 <= T17; 
    A18 <= T18; 
    A19 <= T19; 
    A20 <= T20; 
    A21 <= T21; 
    A22 <= T22; 
    A23 <= T23; 
    A24 <= T24; 
    A25 <= T25; 
    A26 <= T26; 
    A27 <= T27; 
    A28 <= T28; 
    A29 <= T29; 
    A30 <= T30; 
    A31 <= T31; 
    A32 <= T32; 
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    A33 <= T33; 
    A34 <= T34; 
    A35 <= T35; 
    A36 <= T36; 
    A37 <= T37; 
    A38 <= T38; 
    A39 <= T39; 
    A40 <= T40; 
    --put in a bias if proper layer 
    if(LAYERNUM = X"02") then 
     A41 <= X"0100"; 
    else 
     A41 <= T41; 
    end if; 
    A42 <= T42; 
    A43 <= T43; 
    A44 <= T44; 
    A45 <= T45; 
    A46 <= T46; 
    A47 <= T47; 
    A48 <= T48; 
    A49 <= T49; 
    A50 <= T50; 
    --put in a bias if proper layer 
    if(LAYERNUM = X"03") then 
     A51 <= X"0100"; 
    else 
     A51 <= T51; 
    end if; 
    A52 <= T52; 
    A53 <= T53; 
    A54 <= T54; 
    A55 <= T55; 
    A56 <= T56; 
    A57 <= T57; 
    A58 <= T58; 
    A59 <= T59; 
    A60 <= T60; 
    A61 <= T61; 
    A62 <= T62; 
    A63 <= T63; 
    A64 <= T64; 
    A65 <= T65; 
    A66 <= T66; 
    A67 <= T67; 
    A68 <= T68; 
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    A69 <= T69; 
    A70 <= T70; 
    --put in a bias if proper layer 
    if(LAYERNUM = X"04") then 
     A71 <= X"0100"; 
    else 
     A71 <= X"0000"; 
    end if;   
   end if;  
    
    B1_4  <=  TTB1_4;  --hold weights for timing 
      B5_8    <=  TTB5_8; 
      B9_12   <=  TTB9_12; 
      B13_16  <=  TTB13_16; 
      B17_20  <=  TTB17_20; 
      B21_24  <=  TTB21_24; 
      B25_28  <=  TTB25_28; 
      B29_32  <=  TTB29_32; 
      B33_36  <=  TTB33_36; 
      B37_40  <=  TTB37_40; 
      B41_44  <=  TTB41_44; 
      B45_48  <=  TTB45_48; 
     B49_52  <=  TTB49_52; 
      B53_56  <=  TTB53_56; 
     B57_60  <=  TTB57_60; 
      B61_64  <=  TTB61_64; 
      B65_68  <=  TTB65_68; 
      B69_72 <=  TTB69_72; 
    
    
   NODE1 <= NODE0;   --keep node variable 
   SQSH1 <= SQSH0;   --keep squash variable 
  end if;  
 end process; 
    
 
 reg1: process(clk) is 
 begin 
  if(clk'event and clk = '1') then 
   NODE2 <= NODE1;  --keep node variable  (waiting for 
multiplies to finish) 
   SQSH2 <= SQSH1;  --keep squash variable  (waiting for 
multiplies to finish) 
  end if; 
 end process; 
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 reg2: process(clk) is 
 begin 
  if(clk'event and clk ='1') then 
   NODE3 <= NODE2;  --keep node variable 
   SQSH3 <= SQSH2;  --keep squash variable 
   
   C1  <= X"00" & TC1;  --get results from multiplies and zero 
pad to gauruantee no overflow in the sum 
   C2  <= X"00" & TC2; 
   C3  <= X"00" & TC3; 
   C4  <= X"00" & TC4; 
   C5  <= X"00" & TC5; 
   C6  <= X"00" & TC6; 
   C7  <= X"00" & TC7; 
   C8  <= X"00" & TC8; 
   C9  <= X"00" & TC9; 
   C10 <= X"00" & TC10; 
   C11 <= X"00" & TC11; 
   C12 <= X"00" & TC12; 
   C13 <= X"00" & TC13; 
   C14 <= X"00" & TC14; 
   C15 <= X"00" & TC15; 
   C16 <= X"00" & TC16; 
   C17 <= X"00" & TC17; 
   C18 <= X"00" & TC18; 
   C19 <= X"00" & TC19; 
   C20 <= X"00" & TC20; 
   C21 <= X"00" & TC21; 
   C22 <= X"00" & TC22; 
   C23 <= X"00" & TC23; 
   C24 <= X"00" & TC24; 
   C25 <= X"00" & TC25; 
   C26 <= X"00" & TC26; 
   C27 <= X"00" & TC27; 
   C28 <= X"00" & TC28; 
   C29 <= X"00" & TC29; 
   C30 <= X"00" & TC30; 
   C31 <= X"00" & TC31; 
   C32 <= X"00" & TC32; 
   C33 <= X"00" & TC33; 
   C34 <= X"00" & TC34; 
   C35 <= X"00" & TC35; 
   C36 <= X"00" & TC36; 
   C37 <= X"00" & TC37; 
   C38 <= X"00" & TC38; 
   C39 <= X"00" & TC39; 
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   C40 <= X"00" & TC40; 
   C41 <= X"00" & TC41; 
   C42 <= X"00" & TC42; 
   C43 <= X"00" & TC43; 
   C44 <= X"00" & TC44; 
   C45 <= X"00" & TC45; 
   C46 <= X"00" & TC46; 
   C47 <= X"00" & TC47; 
   C48 <= X"00" & TC48; 
   C49 <= X"00" & TC49; 
   C50 <= X"00" & TC50; 
   C51 <= X"00" & TC51; 
   C52 <= X"00" & TC52; 
   C53 <= X"00" & TC53; 
   C54 <= X"00" & TC54; 
   C55 <= X"00" & TC55; 
   C56 <= X"00" & TC56; 
   C57 <= X"00" & TC57; 
   C58 <= X"00" & TC58; 
   C59 <= X"00" & TC59; 
   C60 <= X"00" & TC60; 
   C61 <= X"00" & TC61; 
   C62 <= X"00" & TC62; 
   C63 <= X"00" & TC63; 
   C64 <= X"00" & TC64; 
   C65 <= X"00" & TC65; 
   C66 <= X"00" & TC66; 
   C67 <= X"00" & TC67; 
   C68 <= X"00" & TC68; 
   C69 <= X"00" & TC69; 
   C70 <= X"00" & TC70; 
   C71 <= X"00" & TC71; 
  end if; 
 end process; 
 
 reg3: process(clk) is 
 begin  
  if(clk'event and clk = '1') then 
   NODE4 <= NODE3;  --keep node variable 
   SQSH4 <= SQSH3;  --keep squash variable 
   
   C1_2   <= C1  +  C2; --begin summing the weight/input products 
   C3_4   <= C3  +  C4; 
   C5_6   <= C5  +  C6; 
   C7_8   <= C7  +  C8; 
   C9_10  <= C9  + C10; 
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   C11_12 <= C11 + C12; 
   C13_14 <= C13 + C14; 
   C15_16 <= C15 + C16; 
   C17_18 <= C17 + C18; 
   C19_20 <= C19 + C20; 
   C21_22 <= C21 + C22; 
   C23_24 <= C23 + C24; 
   C25_26 <= C25 + C26; 
   C27_28 <= C27 + C28; 
   C29_30 <= C29 + C30; 
   C31_32 <= C31 + C32; 
   C33_34 <= C33 + C34; 
   C35_36 <= C35 + C36; 
   C37_38 <= C37 + C38; 
   C39_40 <= C39 + C40; 
   C41_42 <= C41 + C42; 
   C43_44 <= C43 + C44; 
   C45_46 <= C45 + C46; 
   C47_48 <= C47 + C48; 
   C49_50 <= C49 + C50; 
   C51_52 <= C51 + C52; 
   C53_54 <= C53 + C54; 
   C55_56 <= C55 + C56; 
   C57_58 <= C57 + C58; 
   C59_60 <= C59 + C60; 
   C61_62 <= C61 + C62; 
   C63_64 <= C63 + C64; 
   C65_66 <= C65 + C66; 
   C67_68 <= C67 + C68; 
   C69_70 <= C69 + C70; 
   C71_N  <= C71; 
  end if; 
 end process; 
  
 reg4: process(clk) is 
 begin  
  if(clk'event and clk = '1') then 
   NODE5 <= NODE4;  --keep node variable 
   SQSH5 <= SQSH4;  --keep squash variable 
   
   C1_4   <= C1_2  +  C3_4;  --continue summing the weight/input 
products 
   C5_8   <= C5_6  +  C7_8; 
   C9_12  <= C9_10  + C11_12; 
   C13_16 <= C13_14 + C15_16; 
   C17_20 <= C17_18 + C19_20; 
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   C21_24 <= C21_22 + C23_24; 
   C25_28 <= C25_26 + C27_28; 
   C29_32 <= C29_30 + C31_32; 
   C33_36 <= C33_34 + C35_36; 
   C37_40 <= C37_38 + C39_40; 
   C41_44 <= C41_42 + C43_44; 
   C45_48 <= C45_46 + C47_48; 
   C49_52 <= C49_50 + C51_52; 
   C53_56 <= C53_54 + C55_56; 
   C57_60 <= C57_58 + C59_60; 
   C61_64 <= C61_62 + C63_64; 
   C65_68 <= C65_66 + C67_68; 
   C69_71 <= C69_70 + C71_N; 
  end if; 
 end process; 
   
 reg5: process(clk) is 
 begin  
  if(clk'event and clk = '1') then 
   NODE6 <= NODE5;  --keep node variable 
   SQSH6 <= SQSH5;  --keep squash variable 
   
   C1_8   <= C1_4  +  C5_8;  --continue summing the 
weight/input products 
   C9_16  <= C9_12  + C13_16; 
   C17_24 <= C17_20 + C21_24; 
   C25_32 <= C25_28 + C29_32; 
   C33_40 <= C33_36 + C37_40; 
   C41_48 <= C41_44 + C45_48; 
   C49_56 <= C49_52 + C53_56; 
   C57_64 <= C57_60 + C61_64; 
   C65_71 <= C65_68 + C69_71; 
  end if; 
 end process;   
  
 reg6: process(clk) is 
 begin  
  if(clk'event and clk = '1') then 
   NODE7 <= NODE6;  --keep node variable 
   SQSH7 <= SQSH6;  --keep squash variable 
   
   C1_16  <= C1_8  +  C9_16;  --continue summing the 
weight/input products 
   C17_32 <= C17_24 + C25_32; 
   C33_48 <= C33_40 + C41_48; 
   C49_64 <= C49_56 + C57_64; 
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   C65_A  <= C65_71; 
  end if; 
 end process;  
  
 reg7: process(clk) is 
 begin  
  if(clk'event and clk = '1') then 
   NODE8 <= NODE7;  --keep node variable 
   SQSH8 <= SQSH7;  --keep squash variable 
   
   C1_32  <= C1_16  +  C17_32; --continue summing the 
weight/input products 
   C33_64 <= C33_48 + C49_64; 
   C65_B  <= C65_A; 
  end if; 
 end process; 
  
 reg8: process(clk) is 
 begin  
  if(clk'event and clk = '1') then 
   NODE9 <= NODE8;  --keep node variable 
   SQSH9 <= SQSH8;  --keep squash variable 
   
   C1_64  <= C1_32  +  C33_64;  --continue summing 
the weight/input products 
   C65_C  <= C65_B; 
  end if; 
 end process;  
  
 reg9: process(clk) is 
 begin  
  if(clk'event and clk = '1') then 
   NODE10 <= NODE9; --keep node variable 
   SQSH10 <= SQSH9; --keep squash variable 
   
   SUM  <= C1_64  +  C65_C; --continue summing the weight/input 
products 
  end if; 
 end process;   
 
--pre-squash manipulation to handle negative inputs. 
 regS10: process(clk) is 
 begin 
     if(clk'event and clk = '1') then 
      NODE11 <= NODE10;  --keep node variable 
      SQSH11 <= SQSH10;  --keep squash variable 
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      UNSQSH11 <= SUM(35 downto 0); --keeps an unsquashed sum 
for output 
      
      --This sets up the uses for the odd property of the squash and gets 
absolutes values the sum 
      if(SUM(35) = '1') then INVALUE11 <= not SUM(34 downto 0) & 
"1";  
      elsif(SUM(35) = '0') then INVALUE11  <= SUM(34 downto 0) & 
"0"; 
      end if; 
       
      SIGN11<=SUM(35);  --keeps track of the sign to use the 
odd property of the squash 
     end if;   
    end process; 
     
 
 
 
--actual squashing begins here. 
 regS11: process(clk) is 
 --THIS PROCESS GETS CHANGED IF WANT TO SWITCH DECIMAL 
POINT 
 begin 
     if(clk'event and clk = '1') then 
      NODE12 <= NODE11;  --keep node variable 
      SQSH12 <= SQSH11;  --keep squash variable 
      UNSQSH12 <= UNSQSH11; --keeps an unsquashed sum for 
output 
      
      --Finds out which Taylor series is closest to approximate the 
squash 
   if(    INVALUE11 >  X"0_000E_9604" ) then SEG12 <= "101";  --
-    greater than 7.293 
   elsif( INVALUE11 >  X"0_0009_8AC0" ) then SEG12 <= "100";  
--6    greater than 4.771 
   elsif( INVALUE11 >  X"0_0006_A24D" ) then SEG12 <= "011";  
--4    greater than 3.317 
   elsif( INVALUE11 >  X"0_0004_F6C8" ) then SEG12 <= "010";  
--2.75 greater than 2.482 
   elsif( INVALUE11 >  X"0_0000_D999" ) then SEG12 <= "001";  
--1    greater than .425 
   elsif( INVALUE11 <= X"0_0000_D999" ) then SEG12 <= "000";  
--0    less or equal .425 
           else SEG12 <= "111"; 
   end if;   
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   INVALUE12 <= INVALUE11(19 downto 4);   --The abs(input) to 
the squash 
    
   SIGN12<=SIGN11;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process; 
 
 regS12: process(clk) is 
 begin 
  if(clk'event and clk = '1') then 
   NODE13 <= NODE12;  --keep node variable 
   SQSH13 <= SQSH12;  --keep squash variable 
   UNSQSH13 <= UNSQSH12; --keeps an unsquashed sum for 
output 
   
   --Finds the offset used in the Taylor Series 
     case SEG12 is 
         when "100" => OFFSET13 <= X"A000";  --segment center 
about 6 
          when "011" => OFFSET13 <= X"8000";  --segment center 
about 4 
          when "010" => OFFSET13 <= X"5800";  --segment center 
about 2.75 
          when "001" => OFFSET13 <= X"2000";  --segment center 
about 1 
          when "000" => OFFSET13 <= X"0000";  --segment center 
about 0 
    when others => OFFSET13 <= X"FFFF"; 
      end case; 
 
   INVALUE13 <= INVALUE12;  --The abs(input) to 
the squash 
   SEG13 <= SEG12;  --Tells which Taylor series is being 
used for approximation 
   SIGN13<=SIGN12;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process; 
 
 regS13: process(clk) is 
 begin 
  if(clk'event and clk = '1') then 
   NODE14 <= NODE13;  --keep node variable 
   SQSH14 <= SQSH13;  --keep squash variable 
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   UNSQSH14 <= UNSQSH13; --keeps an unsquashed sum for 
output 
   
   CENTER14 <= INVALUE13 - OFFSET13; --Recenters the input, 
same as (X-X0) 
 
   --selects the coefficient of the first order in the Taylor series 
   case SEG13 is  
    when "100" => ORDER1ST14 <= X"0014";  --6    1st 
order 0.00244140625000 
    when "011" => ORDER1ST14 <= X"0090";  --4    1st 
order 0.01757812500000 
    when "010" => ORDER1ST14 <= X"01CE";  --2.75 1st 
order .056396484375 
        when "001" => ORDER1ST14 <= X"064A";  --1    1st 
order 0.19653320312500 
    when "000" => ORDER1st14 <= X"0800";  --0    1st order 
0.25000000000000 
       when others => ORDER1ST14 <= X"FFFF"; 
    end case; 
     
   SEG14<=SEG13;  --Tells which Taylor series is being 
used for approximation 
   SIGN14<=SIGN13;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process; 
 
 regS14: process(clk) is 
 begin 
  if(clk'event and clk = '1') then 
   NODE15 <= NODE14;  --keep node variable 
   SQSH15 <= SQSH14;  --keep squash variable 
   UNSQSH15 <= UNSQSH14; --keeps an unsquashed sum for 
output 
 
   --selects the second order coefficient in the Taylor series 
   case SEG14 is  
    when "100" => ORDER2ND15 <= X"000A";  --6    2nd 
order 0.001220703125 
    when "011" => ORDER2ND15 <= X"0046";  --4    2nd 
order 0.008544921875 
    when "010" => ORDER2ND15 <= X"00CB";  --2.75 2nd 
order 0.024780273438 
      when "001" => ORDER2ND15 <= X"0174";  --1    2nd 
order 0.045288085938 
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    when "000" => ORDER2ND15 <= X"0000";  --0    2nd 
order 0.000000000000 
    when others => ORDER2ND15 <= X"FFFF"; 
   end case; 
 
   --selects the constant in the Taylor series 
   case SEG14 is  
    when "100" => ORDER0TH15 <= X"1FEB";  --6    0th 
order 0.997558593750 
    when "011" => ORDER0TH15 <= X"1F6C";  --4    0th 
order 0.982055664063 
    when "010" => ORDER0TH15 <= X"1E14";  --2.75 0th 
order 0.939941406250 
      when "001" => ORDER0TH15 <= X"1765";  --1    0th 
order 0.731079101563 
    when "000" => ORDER0TH15 <= X"1000";  --0    0th 
order 0.500000000000 
       when others => ORDER0TH15 <= X"FFFF"; 
      end case; 
 
   SEG15  <= SEG14;  --Tells which Taylor series is being 
used for approximation 
   SIGN15 <= SIGN14;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process; 
  
 regS15: process(clk) is 
 begin 
  if(clk'event and clk = '1') then 
   NODE16 <= NODE15;  --keep node variable 
   SQSH16 <= SQSH15;  --keep squash variable 
   UNSQSH16 <= UNSQSH15; --keeps an unsquashed sum for 
output 
   
   SUM16 <= SUM15;   --output from a multiply, the 
first order coefficient*(X-X0) 
   SQUARE16 <= SQUARE15; --output from a multiply, recentered 
squared (X-X0)^2 
    
   ORDER2ND16<= ORDER2ND15; --keeps 2nd order coefficient 
for multiplication 
   ORDER0TH16<= ORDER0TH15; --keeps constant 
    
   SEG16 <= SEG15;  --Tells which Taylor series is being 
used for approximation 
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   SIGN16<=SIGN15;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process; 
 
 regS16: process(clk) 
 begin 
  if(clk'event and clk = '1') then 
   NODE17 <= NODE16;  --keep node variable 
   SQSH17 <= SQSH16;  --keep squash variable 
   UNSQSH17 <= UNSQSH16; --keeps an unsquashed sum for 
output 
   
   SUM17 <= SUM16(28 downto 13) + ORDER0TH16; --Sums 
the first order term and constant 
    
   SEG17 <= SEG16;  --Tells which Taylor series is being 
used for approximation 
   SIGN17<=SIGN16;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process; 
  
 regS17: process(clk) is 
 begin 
  if(clk'event and clk = '1') then 
   NODE18 <= NODE17;  --keep node variable 
   SQSH18 <= SQSH17;  --keep squash variable 
   UNSQSH18 <= UNSQSH17; --keeps an unsquashed sum for 
output 
   
   SQRSCALE18 <= SQRSCALE17;  --output from a 
multiply, 2nd order coefficient*squared term C*(X-X0)^2 
    
   SUM18<=SUM17;  --Holds onto the sum of the first 
order term and constant 
    
   SEG18<=SEG17;  --Tells which Taylor series is being 
used for approximation 
   SIGN18<=SIGN17;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process;  
 
 regS18: process(clk) 
 begin 
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  if(clk'event and clk = '1') then 
   NODE19 <= NODE18;  --keep node variable 
   SQSH19 <= SQSH18;  --keep squash variable 
   UNSQSH19 <= UNSQSH18; --keeps an unsquashed sum for 
output 
   
   TEMP19 <= SUM18 - SQRSCALE18(25 downto 10);  --Finishes 
the taylor series, A+B(X-X0)-C(X-X0)^2 
    
   SEG19 <= SEG18;  --Tells which Taylor series is being 
used for approximation 
   SIGN19<=SIGN18;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process; 
 
 regS19: process(clk) 
 begin 
  if(clk'event and clk = '1') then 
   NODE20 <= NODE19;  --keep node variable 
   SQSH20 <= SQSH19;  --keep squash variable 
   UNSQSH20 <= UNSQSH19; --keeps an unsquashed sum for 
output 
   
   --If the original squash input was out of the interesting area of the 
squash, set squash output to 1, other keep squashed value 
   case SEG19 is 
           when "101" => TEMP20 <= X"0100"; 
    when "100" => TEMP20 <= X"0" & '0'& TEMP19(15 
downto 5); 
    when "011" => TEMP20 <= X"0" & '0'& TEMP19(15 
downto 5); 
    when "010" => TEMP20 <= X"0" & '0'& TEMP19(15 
downto 5); 
    when "001" => TEMP20 <= X"0" & '0'& TEMP19(15 
downto 5); 
    when "000" => TEMP20 <= X"0" & '0'& TEMP19(15 
downto 5); 
    when others => TEMP20 <= X"FFFF"; 
    end case; 
     
    SIGN20<=SIGN19;  --keeps track of the sign to use the 
odd property of the squash 
  end if; 
 end process; 
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-----post squash manipulation to handle negative inputs  
 regS20: process(clk) 
 begin 
  if(clk'event and clk = '1') then 
   NODE21 <= NODE20;  --keep node variable 
   SQSHOUT <= SQSH20;  --keep squash variable 
   UNSQSHOUT <= UNSQSH20; --keeps an unsquashed sum 
for output 
    
   --Readjusts output if the original squash input was negative, f(-x) = 
1 - f(x) 
   if(SIGN20 = '1') then REALOUT <= X"0100" - TEMP20; 
   else REALOUT <= TEMP20;  
   end if; 
  end if; 
 end process; 
  
 regS21: process(clk) 
 begin 
  if(clk'event and clk = '1') then 
   --Based on sqshout, outputs the unsquashed values or the squash 
ones. 
   if(SQSHOUT = '1') then  
    TOUT <= REALOUT; 
   else  
    TOUT <= UNSQSHOUT(23 downto 8); 
   end if; 
   
   --Saves the node outputs of a layer in the appropriate location so 
that they  
   --can be moved to be inputs of the next layer at the appropriate 
time. 
   case NODE21 is 
    when X"00" => T1 <= REALOUT; 
    when X"01" => T2 <= REALOUT; 
    when X"02" => T3 <= REALOUT; 
    when X"03" => T4 <= REALOUT; 
    when X"04" => T5 <= REALOUT; 
    when X"05" => T6 <= REALOUT; 
    when X"06" => T7 <= REALOUT; 
    when X"07" => T8 <= REALOUT; 
    when X"08" => T9 <= REALOUT; 
    when X"09" => T10 <= REALOUT; 
    when X"0A" => T11 <= REALOUT; 
    when X"0B" => T12 <= REALOUT; 
    when X"0C" => T13 <= REALOUT; 
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    when X"0D" => T14 <= REALOUT; 
    when X"0E" => T15 <= REALOUT; 
    when X"0F" => T16 <= REALOUT; 
    when X"10" => T17 <= REALOUT; 
    when X"11" => T18 <= REALOUT; 
    when X"12" => T19 <= REALOUT; 
    when X"13" => T20 <= REALOUT; 
    when X"14" => T21 <= REALOUT; 
    when X"15" => T22 <= REALOUT; 
    when X"16" => T23 <= REALOUT; 
    when X"17" => T24 <= REALOUT; 
    when X"18" => T25 <= REALOUT; 
    when X"19" => T26 <= REALOUT; 
    when X"1A" => T27 <= REALOUT; 
    when X"1B" => T28 <= REALOUT; 
    when X"1C" => T29 <= REALOUT; 
    when X"1D" => T30 <= REALOUT; 
    when X"1E" => T31 <= REALOUT; 
    when X"1F" => T32 <= REALOUT; 
    when X"20" => T33 <= REALOUT; 
    when X"21" => T34 <= REALOUT; 
    when X"22" => T35 <= REALOUT; 
    when X"23" => T36 <= REALOUT; 
    when X"24" => T37 <= REALOUT; 
    when X"25" => T38 <= REALOUT; 
    when X"26" => T39 <= REALOUT; 
    when X"27" => T40 <= REALOUT; 
    when X"28" => T41 <= REALOUT; 
    when X"29" => T42 <= REALOUT; 
    when X"2A" => T43 <= REALOUT; 
    when X"2B" => T44 <= REALOUT; 
    when X"2C" => T45 <= REALOUT; 
    when X"2D" => T46 <= REALOUT; 
    when X"2E" => T47 <= REALOUT; 
    when X"2F" => T48 <= REALOUT; 
    when X"30" => T49 <= REALOUT; 
    when X"31" => T50 <= REALOUT; 
    when X"32" => T51 <= REALOUT; 
    when X"33" => T52 <= REALOUT; 
    when X"34" => T53 <= REALOUT; 
    when X"35" => T54 <= REALOUT; 
    when X"36" => T55 <= REALOUT; 
    when X"37" => T56 <= REALOUT; 
    when X"38" => T57 <= REALOUT; 
    when X"39" => T58 <= REALOUT; 
    when X"3A" => T59 <= REALOUT; 
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    when X"3B" => T60 <= REALOUT; 
    when X"3C" => T61 <= REALOUT; 
    when X"3D" => T62 <= REALOUT; 
    when X"3E" => T63 <= REALOUT; 
    when X"3F" => T64 <= REALOUT; 
    when X"40" => T65 <= REALOUT; 
    when X"41" => T66 <= REALOUT; 
    when X"42" => T67 <= REALOUT; 
    when X"43" => T68 <= REALOUT; 
    when X"44" => T69 <= REALOUT; 
    when X"45" => T70 <= REALOUT; 
   end case; 
  end if; 
 end process;  
  
------output  
 output:  OUTVALUE <= X"0000" & X"0000" & X"0000" & TOUT;  ----THIS 
SUBSCRIPT GETS CHANGED IF WANT TO SWITCH DECIMAL POINT 
 
    

end architecture Behavioral;
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