Qualifying Exam Analysis August 2009

1 Definitions

Give thorough and precise definitions of ALL of the properties below.

- (a) measure;
- (b) σ -finite measure;
- (c) semi-finite measure;
- (d) Banach space;
- (e) linear functional;
- (f) uniformly continuous;
- (g) dual of a space;
- (h) weak topology;
- (i) weak* topology.

2 Questions

Give thorough and precise answers to TWO of the following THREE questions.

- i. Let (X, M, μ) be a measure space. What do we mean when we say that μ is:
 - (i) Monotonic?
 - (ii) Subadditive?
 - (iii) Continuous from below?
 - (iv) Continuous from above?
- ii. Let (X, \mathcal{M}, μ) be a measure space. How is the integral with respect to μ constructed/defined?
- iii. Describe all of the different modes of convergence for sequences of functions that we discussed in the course.

3 Theorems

State ALL of the following theorems. Prove ONE of the following FOUR theorems.

- i. The Monotone Convergence Theorem;
- ii. Egoroff's Theorem;
- iii. Riesz Representation Theorem;
- iv. Alaoglu's Theorem.

TURN OVER

4 Problem set I

Solve THREE of the following

Problem 4.1 Let μ^* be an outer measure defined on X. Let $A, B \subseteq X$. If $\mu^*(A) = 0$ then

$$\mu^*(A \cup B) = \mu^*(B).$$

Problem 4.2 Show that the inner product in a Hilbert space is continuous.

Problem 4.3 Let (X, \mathcal{M}, μ) be a measure space. Show that if $\mu(E_n) < \infty$ for each $n \in \mathbb{N}$ and $\chi_{E_n} \to f$ in L^1 then f is (a.e. equal to) the characteristic function of a measurable set.

Problem 4.4 Prove that a bounded linear operator is uniformly continuous. Also show that if a linear operator is continuous at one point then it is bounded.

5 Problem set II

Solve ONE of the following

Problem 5.1 Let (X, \mathcal{M}, μ) be a measure space. Prove that if $f \in L^+$, let $\lambda(E) = \int_E f d\mu$ for $E \in \mathcal{M}$. Then λ is a measure on \mathcal{M} and for any $g \in L^+$, $\int g d\lambda = \int f g d\mu$. (First suppose that g is simple.)

Problem 5.2 Let S be a bounded subset of a normed space X. Let \mathcal{F} be a set of functionals in X^* and let \mathcal{F}_0 be a dense subset of \mathcal{F} (dense in the sense of the norm topology on X^*). Then \mathcal{F} and \mathcal{F}_0 may generate different weak topologies for X, but these topologies are the same on S.