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Topology Qualifying Examination
Instructions: Work two of the problems from each section

1 Topology Section

PROBLEM 1 Local-Compactness.

Theorem 1.1 Let X be a topological space and let A C X be dense. If U € X is open

then (ANU) D U.

Definition 1.1 Let X be a Hausdorff space, and let z € X. We say that X is locally
compact at z if for each U = z open there is an open set z € V C U such that V C U is
compact.

Theorem 1.2 @ is not locally compact in R with its usual topology.

Theorem 1.3 Let X, be a topological space for each & € A. Then [] X, is locally
acA
compact if, and only if, each X, is locally compact and X, is compact for all but finitely

many « € A.

Theorem 1.4 If A is a dense locally compact subspace of a Hausdorff space X then A is
open in X.

PROBLEM 2 Upper Semi-Continuity & Nets.

Definition 2.1 Let f : X — R be a function with X a topological space. f is upper
semi-continuous if the set {z|f(z) > a} is closed for each real number a.

Theorem 2.1 If f and g are upper semi-continuous and t is a non-negative real number
then f + g and tf are upper semi-continuous.

Definition 2.2 The upper topology, U, on R consists of the empty set and all sets of the
form {t:t < a} for all a € R.
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Theorem 2.2 Let f: X — R be a function on the topological space X. Then f is upper
semi-continuous if and only if it is continuous with respect to the upper topology U.

Definition 2.3 Let D be a directed set. If {S,|n € D} is a net of real numbers then
limsup{Sn|n € D} is defined to be lim{sup{S,,/m € D and m > n}ln € D} where this
limit is taken relative to the usual topology on R.

Theorem 2.3 A net {S,|n € D} of real numbers converges to s relative to U if and only
if limsup{Sy|n € D} < s.

Theorem 2.4 Let f: X — R be a function on the topological space X. Then f is upper
semi-continuous if, and only if limsup{f(z,)|n € D} < f(x) whenever {z,|n € D} is a net
in X converging to a point z.

PROBLEM 3 Connection im kleinen & Sierpinski’s Property S
Definition 3.1 Let X be a topological space, and let x € X. We say that X is connected
im kleinen at x if each open set U 2 x contains an open set V' 3 x such that any pair of

points in V lie in some connected subset of U.

Theorem 3.1 If X is locally connected at = then it is connected im kleinen at z.

Note: Let B denote the infinite broom space pictured on page 163 of Munkres.

Theorem 3.2 Being connected im kleinen at x does not imply being locally connected at

Theorem 3.3 If X is connected im kleinen at each point & € X then X is locally connected.
Definition 3.2 A space X has Property S if every open cover of X can be refined by a
cover consisting of a finite number of connected sets. (This property was introduced by
Sierpinski in 1920.)

Theorem 3.4 If X has Property S then X is connected im kleinen at each point.

Theorem 3.5 A compact Hausdorff space is locally connected if, and only if, it has Prop-
erty S.

Theorem 3.6 Not every locally connected Hausdorff space has Property S.
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2 Algebraic Topology Section

PROBLEM 4 Homology I.

Theorem 4.1 (Using only the Eilenberg-Steenrod axioms and assuming all necessary pairs
are admissible, prove the following.) If A, B and X are spaces such that B ¢ A ¢ X, and
there is a deformation retraction of X onto A, then H,(X, B) =~ Hy(A, B) for all p.

Question 4.1 If a simplicial complex K is the union of two connected subcomplezes Kg
and K such that |Ko| N | K| consists of two points, what can be said about the homology of
K?

PROBLEM 5 Covering Spaces.

Theorem 5.1 Let p: X — X be a covering space, and let A C X. Let A = p~1(A). Then
the restriction p: A — A is a covering space.

Theorem 5.2 Let p; : X; — X and P2 Xo — X5 be covering spaces. Then their product
is also a covering space.

Theorem 5.3 Let p: X — X be a covering space with p~!(z) finite and nonempty for all
r € X. Then X is compact Hausdorff if, and only if, X is compact Hausdorff.

PROBLEM 6 Homology I1.

Question 6.1 Compute the homology groups of the A-complex, X, obtained from A™ by
identifying all faces of the same dimension. (Notice X has a single k-simplex for each

k<n.)

Theorem 6.1 Let X be a space and A C X. Then Hy(X, A) = 0 if, and only if, A meets
each path component of X.

Theorem 6.2 Let X be a space and A C X. Then Hy(X, A) = 0 if, and only if, H;(A) 3
Hi(X) is surjective and each path component of X contains at most one path-component

of A.

Theorem 6.3 Let X = [0,1], and let A = {1},,cnU{0}. Then H;(X, A) is not isomorphic
to Hi(X/A).
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PROBLEM 7 Homotopy

Theorem 7.1 Let X be the path-component of a space X containing the basepoint xg.
Then inclusion Xy < X induces an isomorphism 7 (Xp, ) — m1 (X, zg).

Theorem 7.2 Let X be a space and A a path-connected subspace containing the basepoint
zg. Then the homomorphism m(A4,z9) — m(X,z9) induced by inclusion A — X is
surjective if, and only if, every path with endpoints in A is homotopic to a path in A.




