Topology Qualifying Examination

Instructions: Work two of the problems from each section

1 Topology Section

PROBLEM 1 Local-Compactness.

Theorem 1.1 Let X be a topological space and let $A \subseteq X$ be dense. If $U \subseteq X$ is open then $\overline{(A \cap U)} \supseteq U$.

Definition 1.1 Let X be a Hausdorff space, and let $x \in X$. We say that X is *locally compact at* x if for each $U \ni x$ open there is an open set $x \in V \subseteq U$ such that $\overline{V} \subseteq U$ is compact.

Theorem 1.2 \mathbb{Q} is not locally compact in \mathbb{R} with its usual topology.

Theorem 1.3 Let X_{α} be a topological space for each $\alpha \in A$. Then $\prod_{\alpha \in A} X_{\alpha}$ is locally compact if, and only if, each X_{α} is locally compact and X_{α} is compact for all but finitely many $\alpha \in A$.

Theorem 1.4 If A is a dense locally compact subspace of a Hausdorff space X then A is open in X.

PROBLEM 2 Upper Semi-Continuity & Nets.

Definition 2.1 Let $f: X \to \mathbb{R}$ be a function with X a topological space. f is upper semi-continuous if the set $\{x|f(x) \ge a\}$ is closed for each real number a.

Theorem 2.1 If f and g are upper semi-continuous and t is a non-negative real number then f+g and tf are upper semi-continuous.

Definition 2.2 The *upper topology*, \mathcal{U} , on \mathbb{R} consists of the empty set and all sets of the form $\{t: t < a\}$ for all $a \in \mathbb{R}$.

Theorem 2.2 Let $f: X \to \mathbb{R}$ be a function on the topological space X. Then f is upper semi-continuous if and only if it is continuous with respect to the upper topology \mathcal{U} .

Definition 2.3 Let D be a directed set. If $\{S_n|n\in D\}$ is a net of real numbers then $\limsup\{S_n|n\in D\}$ is defined to be $\lim\{\sup\{S_m|m\in D \text{ and } m\geq n\}|n\in D\}$ where this limit is taken relative to the usual topology on \mathbb{R} .

Theorem 2.3 A net $\{S_n|n\in D\}$ of real numbers converges to s relative to \mathcal{U} if and only if $\limsup\{S_n|n\in D\}\leq s$.

Theorem 2.4 Let $f: X \to \mathbb{R}$ be a function on the topological space X. Then f is upper semi-continuous if, and only if $\limsup\{f(x_n)|n\in D\} \le f(x)$ whenever $\{x_n|n\in D\}$ is a net in X converging to a point x.

PROBLEM 3 Connection im kleinen & Sierpinski's Property S

Definition 3.1 Let X be a topological space, and let $x \in X$. We say that X is connected im kleinen at x if each open set $U \ni x$ contains an open set $V \ni x$ such that any pair of points in V lie in some connected subset of U.

Theorem 3.1 If X is locally connected at x then it is connected im kleinen at x.

Note: Let B denote the *infinite broom space* pictured on page 163 of Munkres.

Theorem 3.2 Being connected im kleinen at x does not imply being locally connected at x.

Theorem 3.3 If X is connected im kleinen at each point $x \in X$ then X is locally connected.

Definition 3.2 A space X has Property S if every open cover of X can be refined by a cover consisting of a finite number of connected sets. (This property was introduced by Sierpinski in 1920.)

Theorem 3.4 If X has Property S then X is connected im kleinen at each point.

Theorem 3.5 A compact Hausdorff space is locally connected if, and only if, it has Property S.

Theorem 3.6 Not every locally connected Hausdorff space has Property S.

2 Algebraic Topology Section

PROBLEM 4 Homology I.

Theorem 4.1 (Using only the Eilenberg-Steenrod axioms and assuming all necessary pairs are admissible, prove the following.) If A, B and X are spaces such that $B \subset A \subset X$, and there is a deformation retraction of X onto A, then $H_p(X,B) \approx H_p(A,B)$ for all p.

Question 4.1 If a simplicial complex K is the union of two connected subcomplexes K_0 and K_1 such that $|K_0| \cap |K_1|$ consists of two points, what can be said about the homology of K?

PROBLEM 5 Covering Spaces.

Theorem 5.1 Let $p: \tilde{X} \to X$ be a covering space, and let $A \subseteq X$. Let $\tilde{A} = p^{-1}(A)$. Then the restriction $p: \tilde{A} \to A$ is a covering space.

Theorem 5.2 Let $p_1: \tilde{X}_1 \to X_1$ and $p_2: \tilde{X}_2 \to X_2$ be covering spaces. Then their product is also a covering space.

Theorem 5.3 Let $p: \tilde{X} \to X$ be a covering space with $p^{-1}(x)$ finite and nonempty for all $x \in X$. Then \tilde{X} is compact Hausdorff if, and only if, X is compact Hausdorff.

PROBLEM 6 Homology II.

Question 6.1 Compute the homology groups of the Δ -complex, X, obtained from Δ^n by identifying all faces of the same dimension. (Notice X has a single k-simplex for each $k \leq n$.)

Theorem 6.1 Let X be a space and $A \subseteq X$. Then $H_0(X, A) = 0$ if, and only if, A meets each path component of X.

Theorem 6.2 Let X be a space and $A \subseteq X$. Then $H_1(X, A) = 0$ if, and only if, $H_1(A) \xrightarrow{i_*} H_1(X)$ is surjective and each path component of X contains at most one path-component of A

Theorem 6.3 Let X = [0,1], and let $A = \{\frac{1}{n}\}_{n \in \mathbb{N}} \cup \{0\}$. Then $H_1(X,A)$ is not isomorphic to $H_1(X/A)$.

PROBLEM 7 Homotopy

Theorem 7.1 Let X_0 be the path-component of a space X containing the basepoint x_0 . Then inclusion $X_0 \hookrightarrow X$ induces an isomorphism $\pi_1(X_0, x) \to \pi_1(X, x_0)$.

Theorem 7.2 Let X be a space and A a path-connected subspace containing the basepoint x_0 . Then the homomorphism $\pi_1(A, x_0) \to \pi_1(X, x_0)$ induced by inclusion $A \hookrightarrow X$ is surjective if, and only if, every path with endpoints in A is homotopic to a path in A.