MTH 5310, 5311 Qualifying Examination May 1, 2004

The following notations are used: $\mathcal{M} =$ Lebesgue measurable subsets of \mathbb{R} , $m^* =$ Lebesgue outer measure, m = Lebesgue measure, $\int =$ Lebesgue integration, \ll denotes absolute continuity of one measure w.r.t. another measure.

I. Select <u>three</u> from 1, 2, 3 and 4.

3.1

6 E

- 1(a). Let $A \subseteq \mathbb{R}$. Prove there exists $G \in \mathcal{G}_{\delta}$ such that $A \subseteq G$ and $m^*A = m^*G$.
- (b). Let A and G be as in (a) but with $A \notin \mathcal{M}$. Prove that $m^*(G \setminus A) > 0$.
- 2(a). Let $E_1 \supseteq E_2 \supseteq \cdots$, where $E_n \in \mathcal{M}$, for each *n*. Suppose that for some $k \in \mathbb{N}$, $m(E_k) < \infty$. Prove

$$m\left(\bigcap_{i=1}^{\infty}E_{i}\right)=\lim_{n\to\infty}m\left(E_{n}\right).$$

- (b). Show that $m(E_k) < \infty$, for some $k \in \mathbb{N}$, is a necessary condition in (a).
 - 3. Assume $f : \mathbb{R} \to \mathbb{R}$ is Borel measurable and $g : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable. Prove that $f \circ g : \mathbb{R} \to \mathbb{R}$ is Lebesgue measurable.
 - 4. Assume the measure space (X, \mathcal{A}, μ) is complete. If f is μ -measurable and f = g a. e., show that g is μ -measurable.
- II. Select <u>three</u> from 5, 6, 7, 8 and 9.
 - 5. Let $\langle f_n \rangle$ be a sequence of nonnegative measurable functions on a set $E \in \mathcal{M}$ and assume $f_n \to f$ on E. If $f_n \leq f$, for each n, prove that

$$\int_E f = \lim_{n \to \infty} \int_E f_n.$$

- 6. Show that $L^{\infty}[0,1] \subset \bigcap_{p \geq 1} L^p[0,1]$; (be sure to show the inclusion is also proper inclusion).
- 7. Let $\langle f_n \rangle$ be a sequence of nonnegative Lebesgue measurable functions that decrease pointwise to f. If $\int f_1 < \infty$, show that

$$\lim_{n \to \infty} \int f_n = \int f.$$

- 8. Let $\langle f_n \rangle$ be a sequence of real-valued measurable functions with domain $E \in \mathcal{M}$, where $m(E) < \infty$. Draw arrows giving the positive implications between the designated types of convergence. Also, give counterexamples for all the negative implications.
 - (a) uniform convergence (b) almost uniform convergence
 - (c) convergence in measure (d) a. e. convergence
- 9. Let $h : \mathbb{R} \to \mathbb{R}$ be continuous and bounded. If $f \in L^1(\mathbb{R})$, show that g defined by

$$g(x) = \int_{\mathbb{R}} h(x - y) f(y) dy$$

is continuous and bounded on \mathbb{R} .

- III. Select <u>three</u> from 10, 11, 12 and 13.
 - 10. Define

5 5

$$g(x) = \begin{cases} \frac{(-1)^{n+1}}{n^2}, & x \in [n, n+1), \ n = 1, 2, \dots, \\ 0, & x < 1, \end{cases}$$

and set $\nu(E) = \int_E g dm = \int_E g(x) dx$, for all $E \in \mathcal{M}$. Now, $(\mathbb{R}, \mathcal{M}, \nu)$ is a signed measure space.

- (a). Show $\nu \ll m$, (i.e., $|\nu| \ll m$).
- (b). Show that $(\mathbb{R}, \mathcal{M}, \nu)$ is not complete.
- (c). Give a Hahn decomposition w.r.t. ν of \mathbb{R} .
- (d). Give a Jordan decomposition of ν .
- 11. Let $A = \mathbb{Q} \cap [0, 1] = \{r_1, r_2, \ldots\}$ be an enumeration of the rationals in [0, 1]. Define

$$F(x) = \begin{cases} 0, & x < 0, \\ \sum_{r_n \le x} \left(\frac{1}{2^n}\right), & x \ge 0. \end{cases}$$

- (a). Determine the associated Borel measure μ_F ; that is, determine $\mu_F(E)$, for each Borel set E.
- (b). Show $\mu_F < / < m$.
- (c). Let $\phi(x) = x$. Then evaluate $\int_0^1 \phi dF$.

12. Suppose $f:(0,1) \to \mathbb{R}$ is Lebesgue integrable on (0,1). Define

$$g(x) = \int_x^1 t^{-1} f(t) dt.$$

Show g is integrable on (0, 1) and that

$$\int_0^1 g(x)dx = \int_0^1 f(x)dx.$$

13. Suppose $\langle f_n \rangle$ is a sequence of measurable functions so that $f_n \to f$ in measure and $|f_n| \leq g$, for all n, where g is an integrable function. Prove that

$$\lim_{n \to \infty} \int f_n = \int f.$$

- IV. Select two from 14, 15, 16 and 17.
 - 14. State and prove Fatou's Lemma.
 - 15. State and prove the Lebesgue Dominated Convergence Theorem.
 - 16. State and prove Egoroff's Theorem.
 - 17. State and prove the Jordan Decomposition Theorem.