Part A – Definitions

Give the definitions of the following terms:

- 1. (a) Normal subgroup
 - (b) Simple group
 - (c) Composition series of a group
 - (d) Solvable group
- 2. (a) Degree of a field extension
 - (b) Algebraic extension
 - (c) Separable extension
 - (d) Galois extension
- 3. (a) Prime ideal
- (context: commutative rings)
- (b) Maximal ideal
- (b) Radical of an ideal
- (d) Noetherian ring
- 4. (a) Free module
 - (b) Projective module
 - (c) Projective resolution of a module
- 5. (a) Simple module
- (context: noncommutative rings)
- (b) Semisimple module
- (c) Simple ring
- (d) Semisimple ring

Part B – Theorems

Give the statements of the following theorems:

- 1. Sylow Theorems
- 2. Fundamental Theorem of Galois Theory
- 3. Cayley-Hamilton Theorem
- 4. Wedderburn-Artin Theorem
- 5. Schur's Orthogonality Relations

Part C – Proofs of Theorems

- 1. Prove the first Sylow Theorem.
- 2. Use Kronecker's Theorem to prove that for every prime power $q = p^n$ there exists a field of order q.
- 3. Prove Hilbert's Basis Theorem.
- 4. Prove the existence of the connecting homomorphism δ of the Snake Lemma.
- 5. Sketch a proof of Jacobson's Density Theorem.

Part D – Computational Problems

Show work to justify your answers.

- 1. How many abelian groups (up to isomorphism) are there of order 48?
- 2. (a) How many Sylow 5-subgroups does a simple group of order 60 have?(b) How many Sylow 3-subgroups does a simple group of order 60 have?
- 3. (a) Compute the minimal polynomial of √2 + √3 over Z.
 (b) Compute the Galois group of Q[√2 + √3] over Q.
- 4. Show that $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ if gcd(m, n) = 1.
- 5. Compute the character table of the symmetric group S_3 .

Part E – Theoretical Problems

- 1. Let G be a nonabelian group of order p^3 , where p is a prime number. Prove that the center of G has order p.
- 2. Let A be a commutative ring and I an ideal of A. Prove that A/I is a field if and only if I is a maximal ideal of A.
- 3. If $f(x) \in k[x]$ is a separable polynomial, prove that its discriminant lies in k.
- 4. Let A be a commutative ring and let M, N, and P be A-modules. Prove that there exists a canonical isomorphism of A-modules $M \otimes (N \oplus P) \simeq (M \otimes N) \oplus (M \otimes P)$.
- 5. Let A be a commutative ring and let M be an A-module. Show that the following are equivalent:
 - (i) M is a projective A-module.
 - (ii) $\operatorname{Hom}_A(M, _)$ is an exact functor.
 - (iii) $\operatorname{Ext}^{1}_{A}(M, N) = 0$ for all A-modules N.