Muscle Wrapping

Mentor:
Dr. Brian Garner

Students:
Bo Xu (Tiffany)
Ayodele Ike
Bruno Dos Santos
Overview

- Introduction
- Application area
- Difficulty of simulating muscle path
- Four types of modeling method:
 - Straight line model
 - Centroid line model
 - Obstacle-set model (simple program provided)
 - 3D model based on finite elements (simple program provided)
- Comparison of the latter two methods
- Conclusion
Muscle Wrapping

What is Muscle Wrapping?
- Studied through the path the muscles take around joints and its connection to the bone
- Can be represented through mathematical models

Why Use Computer Simulation?
- Can provide insight into how the nervous system and muscles interact to produce coordinated motion of the body parts
Why Muscle Wrapping Important?

- Point of force application
- Direction of force application
- Muscle length and velocity

![Diagram showing normalized muscle force and length](image)
Application Areas of Muscle Wrapping

- Biomechanics
- www.anybodytech.com
- Biomedical engineering
- Computer graphics

Difficulty of Simulating the Muscle Path

- Complex structures of human joint, take the elbow joint as an example.
Studied Models of Muscle Wrapping

- Straight-line modelPart I
- Centroid-line modelPart II
- Obstacle-set modelPart III
- 3D modelPart IV
Part I

Straight-line Model

- Easy to implement.
- Represented by a straight line joining centroids of the muscle attachment areas.
- Does not yield meaningful results in the complex cases.
Part II
Centroid-line Model

- Represented by a line that passes through the locus of the cross sectional centroids of the muscle.
- More realistic description of the muscle action.
- Cross-sectional centroids are difficult to obtain.
- Applications limited with approximations.
Part III
Obstacle-set Model

The muscle path in this method is formed by several segments of straight lines and curved lines joined together by via points. And the anatomical constrains are modeled by cylinder, sphere, stub, or any other combinations of those geometries.
Part III
Obstacle-set Model

Application: Model of paths of the three-heads of triceps brachii.

Reference:
Part III
Obstacle-set Model

Model Analysis:

A good agreement can be found between the model and experiment over the full range of elbow flexion which indicates that the paths of these muscles are represented accurately in the model.
A Simple Program According to the Obstacle-set Model via C++ & openGL

Obstacle-set Muscle Path:

The muscle fiber wrapping around the elbow is modeled as three segments of lines going around a cylinder shaped elbow.
Finite element meshes and geometric descriptions of the fibers are created for each muscle.
Part IV 3D Model based on finite elements

Application: Fiber geometries mapped to the psoas, gluteus maximus, iliacus and gluteus medius.

Reference:
Model Analysis:

It turns out that there are generally good agreement between the muscle paths predicted by the models and the MRI data.
A Simple Program
According to the 3D Model
via C++ & openGL

3D Muscle Path:

Based on the idea of the 3D model, the energy of a muscle fiber is calculated according to the following equation:

\[G_{\text{Muscle}} := 5.0 \cdot 10^2 \text{ Pa} \]
\[K_{\text{Muscle}} := 1.0 \cdot 10^7 \text{ Pa} \]
\[\psi = G_1 B_1^2 + G_2 B_2^2 + W_3(\lambda, \alpha) + \frac{k}{2} \ln(J)^2 \]

Smallest energy is reserved each time one end of the muscle fiber is moved.
Comparisons of Two Models

- Obstacle-set Model (Garner method)

 Does not account for fact that muscle tissue connects each other
 -- not accurate in some cases

- 3D Model (Blemker method)

 More data, complex math calculation
 -- not efficient
Further Research

- Tension between desire to have model accuracy, and desire to have simplicity and computational efficiency

- What’s the future plan?
Seek some compromise approach that is both accurate and efficient??
Thank You!

Questions?

References: