Biomechanics of Karate: Measuring Impact Force in Shotokan Karate Strikes

Yasaman Shirazi

January 26, 2007
OVERVIEW

- Purpose
- Shotokan Technique
- Hypotheses
- Apparatus
- Experiment Protocol
- Data
- Results
- Future Plans and Studies
PURPOSE

- Studying Martial Arts from an Engineering Perspective
- Quantifying Strength of Various Techniques
- Finding Scientific Proof behind the Traditional Arts and their Applications
- Assisting Proper Teaching of Shotokan Karate Strikes
REVERSE PUNCH

- One of the Most Basic and Common Strikes
- Delivered in 3 Orientations:
 - Horizontal – Kihon (Basics)
 - Vertical (Jab) – Kumite (Sparring)
 - 45 Deg – Bunkai (Real Life Application)
REVERSE PUNCH
REVERSE PUNCH
HYPOTHESES

- Strike Effectiveness will be influenced by:
 - Experience
 - Angle of Delivery
 - Horizontal – Strongest
 - Vertical – Fastest
 - 45 Deg – Most Practical
 - Gender
 - Size
APPARATUS DESIGN

Criteria:

- Deliver Direct Linear Impact to a Force Sensor
- Produce No Moment if Hit Off-centered
- Be Adjustable According to Different Heights
- Be Robust and Stable
- Can Be Built Within Our Time Limit and Available Materials
DATA COLLECTION

- 2000lb Load Cell
 - Located Directly Behind the Target
- Motion Capture System
 - 3 High Speed Cameras to Record the Motion
 - 6 Reflective Markers on Joints of Interest on the Subjects
APPARATUS DESIGN

Diagram: Components of an apparatus design including a Load Cell, Punching Pad, and Force Plate.
EXPERIMENTS

- Set Up
 - Calibrating the Cameras
 - Pilot Testing
EXPERIMENTS

- **Subjects:**
 - Beginner (1F, 2M)
 - Intermediate (3F, 3M)
 - Advanced (3F, 3M)
 - Read & Sign the Consent Form
 - Warm up
 - Free Trials
 - Wear 6 Reflective Markers

- **Testing Protocol**
 - 3 Sets (Horiz, 45 Deg, Vert)
 - 5 Punches Each
DATA PROCESSING

- SIMI
 - Recording the Force Data
 - Processing Video Files and Tracking Markers
- C++
 - Finding Peak Forces and Time of Impact
 - Adjusting the Off Set of the Force
 - Importing Data and Creating Excel Files
- Excel
 - Processing Numeric Results
 - Normalizing and Finding Correlations among Different Variables
RESULTS

- Processed Data

[Diagram: Force vs. Time - 45 Deg]
RESULTS

Overall Average Force

Categories

Force (lbs)

Horizontal
45 Deg
Vertical
RESULTS

• Comparing Force Based on Gender and Experience
RESULTS

<table>
<thead>
<tr>
<th>Pearson Correlation Coefficient</th>
<th>Max F (lbs)</th>
<th>Average F (lbs)</th>
<th>Force STD</th>
<th>Max Impulse (lb.s)</th>
<th>Ave. Impulse (lb.s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grip Strength (lbs)</td>
<td>0.863</td>
<td>0.902</td>
<td>0.320</td>
<td>0.678</td>
<td>0.819</td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td>0.741</td>
<td>0.686</td>
<td>0.523</td>
<td>0.705</td>
<td>0.607</td>
</tr>
<tr>
<td>Height (in)</td>
<td>0.587</td>
<td>0.628</td>
<td>0.168</td>
<td>0.191</td>
<td>0.509</td>
</tr>
<tr>
<td>BMI</td>
<td>0.436</td>
<td>0.318</td>
<td>0.562</td>
<td>0.392</td>
<td>0.332</td>
</tr>
<tr>
<td>Experience (Months)</td>
<td>-0.107</td>
<td>-0.054</td>
<td>-0.173</td>
<td>-0.082</td>
<td>-0.023</td>
</tr>
</tbody>
</table>
RESULTS

- Impulse = \int F \cdot dt
- Ave. Impulse vs. Ave. Force
 - Pearson Correlation Coefficient = 0.8685

\[Y = 0.0208 \times + 0.955 \]

\[R^2 = 0.7543 \]
CHALLENGES

- Not Having Enough Support to Keep the Apparatus in Place
 - Having Off-set Force Data
- Verifying if the Strike is Delivered Correctly
- Having to Recalibrate the Cameras
- Exporting Force Data from SIMI
FUTURE STUDIES

- Processing the Motion Capture Video Files
- Testing Larger Group of Subjects
- Using Random Combinations
- Experiment Different Padding or Gloves
- Modifying Apparatus Design
- Securing the Apparatus to the Wall
- Possibly Studying Other Strikes, i.e. Kicks
- ...