Hey everyone! Welcome back to another weekly resource! This week we will be getting into cell signaling and the beginnings of cellular reproduction. Cell division is a very important topic that will come back in later biology courses so do your best to get a good handle on it now. Best of luck studying! Reminder: I hold weekly group tutoring sessions on Mondays from 6:30-7:30 pm in room 74 in the basement of Sid Rich! For more information you can visit our website here: https://baylor.edu/tutoring

Keywords: Cell Signaling, The Cell Cycle, Meiosis

Topic of the Week: Cell Signaling

Cells are in *constant communication* with one another. We have talked about some cellular communication through *cell junctions*, but how do cells communicate with other cells that are all the way across the body? The answer is **long distance signaling**! This brings us to the discussion of the two main types of cell signaling:

- **Local signaling**: up to a **few cells** distance
 - Two types:
 - Paracrine: involves secretion of molecules such as growth factors
 - Synaptic signaling: a neurotransmitter is released into a synapse

- **Long distance signaling**: up to a **body length** distance
 - One type:
 - Endocrine (hormonal): specialized cells can release **hormones** in fluids such as the blood. The hormones will travel to the target cells in this way.

There are three stages of cell signaling:

1. **Signal reception**
 - The target cell detects a *signaling molecule* from outside of the cell
 - The signal molecule binds to a *receptor protein* at the cell’s surface

2. **Signal transduction**

All diagrams, tables, and external information is property of Pearson Campbell Biology 11th edition, unless otherwise specified.
- The binding of the signaling molecule causes a conformational change in the protein shape that starts a chain reaction

3. **Cellular response**
- A response is triggered in the cell. This response can be anything!

![Image of signaling process](image)

There are several types of receptors in the plasma membrane that are involved in cellular signaling:
- G protein-coupled receptors (GPCRs)
- Receptor tyrosine kinases
- Ligand gated ion channels

Phosphorylation and Dephosphorylation
- **Protein kinase**: an enzyme that transfers phosphate groups from ATP to a protein
 - Many signal transduction pathways use these to form a phosphorylation cascade
- The opposite of a protein kinase is a **protein phosphatase**, an enzyme that takes phosphate groups off of proteins

Highlight #1: The Cell Cycle Overview

Cell division is vitally important and is the reason you are who you are! Before we talk about cell division, let’s talk about some **cellular features** that will play a role in the cell’s life cycle.

Each one of your cells contains a copy of your **genome**, which is all of your genetic information. Your genome is packaged into **chromosomes** which have to be copied before your cells can divide. Our **somatic cells (body cells)** specifically have 46 chromosomes, while our **gametes (reproductive cells)** have 23 chromosomes.

After chromosomes are copied before division, each chromosome will have two **sister chromatids** that are attached to each other.
The picture on the right shows that the sister chromatids of a single chromosome are attached at their centromeres. Now we can start laying the foundation of cell division. There are two main phases in a cell’s division:

Mitosis: division on genetic material
Cytokinesis: division of cytoplasm

Stages of the Cell Cycle

Mitosis is part of the cell cycle, but it is actually the shortest part of the entire life cycle of a cell. When a cell is not dividing, it is in *interphase*, a period of growth and development. Interphase consists of several distinct phases:

- **G1** – growth
- **S** – “synthesis”
- **G2** – more growth

As you can see, mitosis makes up only a small part of a cell’s life. However, it is extremely important and consists of many stages. Your book has a very detailed picture of these steps, but for now I just listed the main points for each stage:

- **Prophase**—DNA condenses, mitotic spindle begins to form
- **Prometaphase**—nuclear envelope breaks down, kinetochore forms
- **Metaphase**—chromosomes line up at the center
- **Anaphase**—sister chromatids pull apart
- **Telophase**—nuclei reform, chromosomes relax
- **Cytokinesis**—cytoplasm divides and two daughter cells are formed

Looking closer at cytokinesis…

When a cell enters cytokinesis, a *cleavage furrow* forms and essentially “pinches” the cell into two. Specifically in plants, a cell *plate forms* and grows until it fuses with the cell membrane.
Cell Cycle Control System

So how does a cell know what to do in the cell cycle? The life of a cell is directed by a *control system* in which specific molecules activate the cycle and push the cell through it. The control center consists of several *checkpoints* that decide whether or not a cell is prepared to divide.

The molecules that regulate this control system:

- **Protein kinases and cyclins**

The *concentrations* of these molecules within the cell determines how the cell proceeds through the cycle.

Highlight #2: Meiosis and Sexual Life Cycles

Now that we know the basics of cell division, we can start talking about *genetics*! Here are some basic terms to have down before moving forward:

- **Genes**: hereditary units
- **Locus**: a gene’s location on the chromosome
- **Homologous chromosomes**: a pair of chromosomes where one comes from mom and one comes from dad
- **Sex chromosomes**: chromosomes that determine sex
- **Autosomes**: all other chromosomes besides sex chromosomes

Our body cells are *diploid cells*, meaning they have *two sets* of chromosomes—one from our mother and one from our father. In other words, our cells that have 46 chromosomes have 23 from our mom and 23 from our dad. This is an important concept to understand before moving on in genetics.

Haploid cells contain only *one set* of chromosomes. Gametes (egg and sperm cells) are haploid because when they meet at fertilization, their sets combine to make a *diploid zygote*. So, how do gametes come to have just one set of chromosomes? This happens through *meiosis*! Meiosis is very similar to mitosis in several ways, but there are some key differences:

Meiosis consists of *two cell divisions*, meiosis I and meiosis II. Each of these divisions contains steps prophase, metaphase, anaphase, telophase, and cytokinesis. Notice that meiosis does not have a prometaphase. Your book also has a very detailed picture of each stage of meiosis that I highly recommend you look at.

All diagrams, tables, and external information is property of Pearson Campbell Biology 11th edition, unless otherwise specified.
This helpful image shows the main differences between mitosis and meiosis:

Three **things occur** in meiosis I that make it unique from mitosis:
- Synapsis and crossing over
- Homologous pairs align at metaphase plate
- Homologs separate

One last key thing to note about meiosis is the way that it generates *genetic variation*. There is a concept that is extremely important to understand if you plan to take a genetics class later on: **Independent assortment of chromosomes** – during meiosis I, homologous chromosomes line up at the metaphase plate. Homologs arrange themselves *randomly*! In the image above, notice in metaphase I that the red and blue pairs of chromosomes do not all link up on the same side. This generates *variation* in the chromosome composition of the daughter cells at the end of the process.

CHECK YOUR LEARNING

1. What are the main differences in mitosis vs. meiosis?
2. What is the difference between a locus and a gene?

THINGS YOU MAY STRUGGLE WITH

1. Remember that meiosis has two phases! And remember that the goal is to have genetically different daughter cells.

2. Remember that sister chromatids become chromosomes during anaphase II. The number of chromosomes doubles at this point in the cycle!

Well that’s all for this week’s resource. I hope to see you all at group tutoring this week. If you need more info about the tutoring center you can go to https://baylor.edu/tutoring.

Answers:

1. These things occur: Synapsis and crossing over, Homologous pairs align at metaphase plate, Homologs separate

2. Genes: hereditary units. Locus: a gene’s location on the chromosome