Hello everybody, happy test week! Study hard, and check out last week’s resource if you would like extra practice with topics/concepts or practice problems. This week marks the beginning of second unit material for all sections, so please take the opportunity to get ahead!

Remember: the Tutoring Center offers free individual and group tutoring for this Genetics. Our Group Tutoring sessions will be Thursdays from 5:15-6:15 PM at the Sid Rich basement, room 75! You can reserve a spot at https://baylor.edu/tutoring. I hope to see you there!

Keywords: Pedigree, Testcross, Linked Genes, Recombination, Gene Map

Topic of the Week: Linked Genes and Recombination (7.1-7.2)

Linked Genes: genes which do not follow mendel’s second law of inheritance (in that they do not segregate independently of one another) because the **crossover** together

Genes at different Loci May follow one of may patterns

- **Completely Independent**: genes at two loci always assort *independently*
 note: generally, these are genes on separate chromosomes

- **Incompletely Linked**: genes at two loci that have a great deal of physical separation on the same chromosome; normally assort *independently*, but other times are linked

- **Completely Linked**: genes at two loci on a single chromosome that will be linked at any crossover event

All diagrams, tables and figures are the property of Benjamin A. Pierce; Genetics: A Conceptual Approach. Additional sources are the property of The National Basketball Association, McGraw Hill Biology, and NBC Universal
Crossing Over: exchange of material between adjacent arms on homologous chromosomes in **prophase I** of gamete formation.

Recombination: the formation of novel allelic combinations not present in the parents.

Recombination Frequency \((f_R)\): \[
\frac{\text{number of recombinant progeny}}{\text{total progeny}} \times 100%
\]

\(f_R\) represents the likelihood that crossing over produces recombinant offspring at two *incompletely linked* loci.

The **recombination frequency** between two *completely linked* loci would be 50% if a crossover event happened in every meiosis. This is because at a single crossover, *half* of the gametes will be **recombinant** and the *other half* will be **non-recombinant**.

Frequency of recombinant gametes: the likelihood of the creation of each gamete, which will be \(1/2\) the \(f_R\).

Simplification: frequency of recombinant gametes = \(1/2 f_R\)

Testcross: an individual with hetero- or homozygous dominant expression of a gene is crossed with an individual who is recessive at both loci.

Generally we use a double heterozygote crossed with a homozygous recessive

What is the expected genotypic ratio of a AaBb x aabb cross?

1:1:1:1

If genes are **linked**, the number will deviate from this.

Terminology:

Wild-Type: the allele most commonly seen in nature.

Mutant-Type: a new allele created by natural or laboratory mechanisms which exists with a wild type allele at a locus (although many examples categorize these as recessive, they can be dominant or recessive, depending on the inheritance pattern of the wild type allele).
Gene Configuration: the conformation of homologous chromosomes with respect to where the how the dominant and recessive alleles are aligned at each locus

Coupling (cis): both dominant and both recessive alleles are present (at their respective locus) on each homolog \(\frac{A}{a} \frac{B}{b} \)

Repulsion (trans): 1 dominant and one recessive allele on each homolog \(\frac{A}{a} \frac{b}{B} \)

*Yes, this is the same as the conformations of vinyl H-atoms in double bond stereochemistry!

Highlight #1: Pedigree Analysis (6.2)

https://www.youtube.com/watch?v=Gd09V2AkZv4

Symbols used in pedigrees:

[Image: Diagram of pedigree symbols]

Autosomal Recessive: Equal proportions in males and females; can **skip** generations/be ‘hidden’ by carriers (note: obligate carrier symbol will not always be shown in a pedigree)

Consanguinity: inbreeding/cross between cousins

Autosomal Dominant: Every affected individual must have an affected parent; **Won’t** skip generations

X-Linked Recessive: Unequal proportion of males and females affected (more in males); may **skip** generations

Rule of Thumb:

- When a daughter is affected, the father is affected
- An affected son’s mother has the trait, or is a carrier (heterozygote)

X-Linked Dominant: Every affected individual must have an affected parent; **Won’t** skip generations

Rule of Thumb:

- Every affected male’s daughter has the trait
- Sons: inherit from mom only
- Daughters: inherit from mother or father

Y-Linked trait: Passed from father to son; doesn’t skip generations (**males only**)

Note: see table 6.1 for more conditions for each of these general rules of thumb
Week 4 Concept Check:

1. What pattern of inheritance is displayed by the pedigree?
2. True/False Two alleles, Ao and Ap have a recombination frequency of 43 so they are in separate linkage groups
3. Two loci, A(a) and B(b) are located near each other on a chromosome. A female in cis configuration is heterozygous at both loci and crosses with a recessive male. What is the recombination frequency of the following linked gene?

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{A}{\bar{A}} \frac{B}{\bar{B}})</td>
<td>82</td>
</tr>
<tr>
<td>(\frac{a}{\bar{a}} \frac{b}{\bar{b}})</td>
<td>78</td>
</tr>
<tr>
<td>(\frac{A}{\bar{A}} \frac{b}{\bar{b}})</td>
<td>8</td>
</tr>
<tr>
<td>(\frac{a}{\bar{a}} \frac{B}{\bar{B}})</td>
<td>4</td>
</tr>
</tbody>
</table>

THINGS YOU MAY STRUGGLE WITH:

1. If you are stuck between multiple possible types of inheritance on a pedigree, try drawing out the crosses; sometimes, several inheritance patterns may seem identical, but they will have differences that can be visualized by a cross. When doing this, work from homozygous recessive individuals because you automatically know their genotype.

All diagrams, tables and figures are the property of Benjamin A. Pierce; Genetics: A Conceptual Approach
Additional sources are the property of The National Basketball Association, McGraw Hill Biology, and NBC Universal
2. In a testcross evaluating recombination frequency, the recombinant progeny will be those which exist in the smallest numbers.
3. If the recombination frequency between two genes is ≥ 50, the two are treated as two separate linkage groups, or on separate chromosomes, because they assort independently.

You Try: Click the link to try these practice problems on google forms!

Formative Practice Week 3:
https://docs.google.com/forms/d/e/1FAIpQLSc7uszVJmMFnA4nSn_9eK7R7g7sNtuzOa24Br1irF7ENZN-eQ/viewform?usp=sf_link

Note: also includes **Chapter 8** questions since Dr. Fernandez-Luna’s class covers this week 4

CONGRATS: You made it to the end of the resource! Again, group tutoring will be every Thursday from 5:15-6:30 PM. You can reserve a spot at https://baylor.edu/tutoring. I hope to see you there!

Answers:
1. X-Linked Dominant
2. False
3. $f_r = 0.0698$

All diagrams, tables and figures are the property of Benjamin A. Pierce; Genetics: A Conceptual Approach. Additional sources are the property of The National Basketball Association, McGraw Hill Biology, and NBC Universal