
CSI 1401 Week 6 Resources 
by Allen Yan 

 

 This weeks, CSI 1401 will begin chapter 5, which introduces the concept of looping. Looping is 

extremely useful for programs that need to run for an indeterminate number of repetitions. The class 

will be spending 2 weeks on chapter 5. 

 As a reminder, I will be leading a group tutoring session on CSI 1401 every Wednesday from 7:00 

pm to 8:00 pm (central time). The session will be conducted online via Microsoft Meetings, where I will 

be available to provide interactive help to students. If the above time window does not work for you, or 

if you need additional help, Baylor’s Tutoring Center also provides 1-on-1 online tutoring appointments. 

For more information on signing up for group tutoring or individual tutoring, please visit 

https://www.baylor.edu/tutoring. 

 

Week 6 Important Topics 

Chapter 5 – Looping 

• While loops 

• While loop exercises 

1. While loops 
While loops will be the first type of loop you learn. It will repeatedly execute the block of code after 

the loop expression (called the loop body) as long as the loop expression evaluates to a Boolean 

True. Each execution of the loop body is called an iteration. The loop expression is evaluated before 

each iteration of the loop. 

Loops should always have a reachable end condition that causes the loop to terminate when met. 

There are a number of ways to implement these conditions, and different textbooks may name 

them differently. The textbook for this course uses the name sentinel value. See the example code 

from the textbook below from the textbook: 

nose = '0'  # Looks a little like a nose 

user_value = '-' 

 

while user_value != 'q': 

    print(' {} {} '.format(user_value, user_value))  # Print eyes 

    print('  {}  '.format(nose))  # Print nose 

    print(user_value*5)  # Print mouth 

    print('\n') 

 

    # Get new character for eyes and mouth 

    user_input = input("Enter a character ('q' for quit): \n") 

https://www.baylor.edu/tutoring


    user_value = user_input[0] 

 

print('Goodbye.\n') 

 

The code above prints out faces composed of the input made by user until the user enters the 

character ‘q’, which then causes the program to end. In this case, the character ‘q’ will be 

considered the sentinel value, and the variable user_value assessed is called the loop variable. 

One important thing to note is that not only does the sentinel value need to be set, the programmer 

also needs to make sure that the program is able to reach it. Whether it be requesting input from 

the user every iteration like the code above, or in the case where the loop variable is a counter, 

update the counter in every iteration of the loop. See below for an example program from the 

textbook that uses a counter for loop variable. 

'''Program that calculates savings and interest''' 

 

initial_savings = 10000 

interest_rate = 0.05 

 

print('Initial savings of ${}'.format(initial_savings)) 

print('at {:.0f}% yearly interest.\n'.format(interest_rate*100)) 

 

years = int(input('Enter years: ')) 

print() 

 

savings = initial_savings 

i = 1  # Loop variable 

while i <= years:  # Loop condition 

    print(' Savings at beginning of year {}: ${:.2f}'.format(i, 

savings)) 

    savings = savings + (savings*interest_rate) 

    i = i + 1  # Increment loop variable 

 

print('\n') 

 

As shown, the variable i is used as the loop variable and has the behavior of a counter. The last line 

of the loop body increments i for every iteration of the loop. So, the loop variable is guaranteed to 

reach the sentinel value, which in this case is the user-made variable years, after a finite number 

of iterations. If the loop expression is never able to evaluate to False, the loop will execute forever 

and result in an error called infinite loop, which is common but deadly. Therefore, always make sure 

that the loop can reach its end condition. 

2. While loop exercises 
The topic of while loop will likely cover the majority of week 6. Since looping may be a completely 

new concept for some of the students, it could take a while (sorry, no pun intended) to familiarize 

the looping structure and the types of problems looping can solve. I have included a few exercise 

programs below (with answers provided) to help you understand looping. Some of the problems 



may be more concise when solved using for loops, but while loops can do and more. Make sure to 

try the problems yourself before looking at the answers! 

a) Write a Python program that asks for a word from the user and prints it in reverse. 

word = input("Give me a word: ") 

index = len(word) - 1 

 

while index >= 0: 

    print(word[index], end="") 

    index = index-1 

print("\n") 

 

b) Write a Python program to print out the following pattern with loops. 

*  

* *  

* * *  

* * * *  

* * * * *  

* * * *  

* * *  

* *  

* 

n = 5 

 

i = 1 

while i <= n: 

    j = 0 

    while j < i: 

        print('*', end=' ') 

        j = j+1 

    print('') 

    i = i+1 

 

i = 4 

while i > 0: 

    j = 0 

    while j < i: 

        print('*', end=' ') 

        j = j + 1 

    print('') 

    i = i - 1 

 



Useful Resources 

• Basic Python Tutorial on GeeksforGeeks: 

https://www.geeksforgeeks.org/python-programming-language/ 

o This page provides links to detailed explanations to many entry-level Python concepts 

along with examples. I encourage taking a look at it if the examples in your textbook 

were not clear enough. 

• Official Python Documentation: 

https://docs.python.org/3/ 

o This may be a bit heavy-handed for a beginner-level programmer since the official 

Python documentation is very thorough and technical. However, learning how to read 

official documentations is crucial to becoming a good programmer, because the official 

documentation contains information on everything you can find about Python 

elsewhere and more. Therefore, I encourage slowly easing yourself into learning how to 

read the official documentation.  

https://www.geeksforgeeks.org/python-programming-language/
https://docs.python.org/3/

