Special Undergraduate Lecture by Mathematician Sam Vandervelde

DateOctober 11, 2012Time5:00 pm
LocationSR 207

Dr. Sam Vandervelde, a mathematician from St. Lawrence University in Canton, NY will give a special undergraduate colloquium this Thursday, October 11. The title of his lecture is "Where is the middle of a Fibonacci sequence?". Students (math majors or not) are especially encouraged to attend. This is a general talk accessible to all students.

Sam Vandervelde
Professor Sam Vandervelde

A reception for Dr. Vandervelde will take place at 3pm on Thursday in SR 318. All students and faculty are invited.

Dr. Vandervelde earned his Ph.D. degree in mathematics from the University of Chicago in 2004. His main research specialty is number theory, a subject for which he has several publications. Prior to his current position at St. Lawrence University where he is an Associate Professor, Sam taught at Stanford, Wellesley College, Phillips Academy, and Northeastern University.

Sam's interests in teaching,for which he has won several national awards, go well beyond the classroom. Indeed, he is active in developing, and participating, in workshops (like Math Circles, Circle-in-a-Box, and Teacher's Circle) with teachers organized through the Mathematical Association of America, the Mathematical Sciences Research Institute, and the American Institute of Mathematics.

Sam also runs the Mandelbrot Competition, a high school mathematics competition, that served more than 6000 students last year. As an undergraduate student, Sam won a silver medal for the US team in the 1989 International Mathematical Olympiad and also placed in the top 15 (twice) in the Putnam examination.

Here is the abstract of Dr. Vandervelde's lecture on Thursday:

Where Is The Middle of a Fibonnaci Sequence?
(Thursday, October 11; 3:30 pm, SR 207)


The Fibonacci sequence is constructed by beginning with 1, 1 and then successively including more numbers (on both sides) so that the sum of any two terms equals the next, yielding …, 5, -3, 2, -1, 1, 0, 1, 1, 2, 3, 5, … We would all agree that 0 is in the “middle “ of this sequence. But try to guess the middle term when we start with a different pair of numbers, such as 1, 6 leading to ..., -13, 9, -4, 5, 1, 6, 7, 13, 20, ... (Hint: it’s not 1). Correctly identifying the middle terms leads to a breathtakingly beautiful array that organizes all Fibonacci sequences and provides a clever means of answering questions such as "In the Fibonacci sequence generated by 1492, 2013 are there any multiples of 2017?"
vCalDownload this event