Archived News – March 2014
Mar
27
2014
A new material that filters light according to its direction of travel has been developed by physicists in the US and China. Made of alternating layers of two different transparent materials, the structure is just 8 μm thick and offers a new and extremely simple way of controlling the direction in which light propagates. According to its inventors, the material could be used in a range of applications, from photography to solar energy.
Mar
26
2014
Neutron stars could share some unlikely similarities with metallic alloys here on Earth. That's the conclusion of two physicists in Scandinavia, who have carried out calculations that reveal that the nuclei and neutrons in the outer crust of these stars play a similar role to the different metals in an alloy. The finding could provide insights into some observable properties of neutron stars, including gamma-ray bursts, rotational glitches and gravitational waves.
Mar
18
2014
There's no way for us to know exactly what happened some 13.8 billion years ago, when our universe burst onto the scene. But scientists announced Monday a breakthrough in understanding how our world as we know it came to be.
If the discovery holds up to scrutiny, it's evidence of how the universe rapidly expanded less than a trillionth of a second after the Big Bang
If the discovery holds up to scrutiny, it's evidence of how the universe rapidly expanded less than a trillionth of a second after the Big Bang
Mar
18
2014
Bored with your old dimensions—up and down, right and left, and back and forth? So tiresome. Take heart, folks. The latest news from Big Bang cosmologists offers us some relief from our humdrum four-dimensional universe. Gravitational waves rippling through the aftermath of the cosmic fireball, physicists suggest, point to us inhabiting a multiverse, a universe filled with many universes.
Mar
4
2014
Every black hole conceals a secret — the quantum remains of the star from which it formed, say a group of scientists, who also predict that these stars can later emerge once the black hole evaporates. The researchers call these objects "Planck stars" and believe that they could solve a very important question in modern physics: the information paradox, or the question of what happens to information contained in matter that falls into a black hole. The idea could also finally reconcile quantum mechanics and Albert Einstein’s general theory of relativity that describes gravity, thus showing how a theory of quantum gravity might solve longstanding puzzles in the world of physics.
Mar
3
2014
The first microscope that uses the eerie trick of quantum entanglement to increase its sensitivity has been developed by Japanese researchers. The new tool relies on a weird principle of quantum mechanics, in which two particles can become entangled so that even when separated by large distances, say light-years, they are intimately connected. Using such entangled photons, or particles of light, the microscope reveals things that are completely transparent, visualizing them in a much better quality than could be done with ordinary light.