Self-Consistent Dynamic Simulation of Ions around a Negatively Charged Dust Grain

Beau A. Brooks
Dustin L. Sanford
Naoki B. Ellis
Dr. Lorin S. Matthews
Dr. Truell W. Hyde
Overview

◦ Research Goal
◦ Code Development
◦ Current Code
 • Parameters
 • Forces
 • Ion Density
 • Electric Potential
 • Ion-Neutral Particle Collisions
◦ Results
◦ Conclusions
Objective

◦ Inspiration:
 • Alexander Piel
 • Developed MAD code to model N-ions in a plasma sheath
 • Models Ion density and electric potential

◦ Create a dynamic simulation to repeat Piel results

◦ Implement additional forces

Model

- Ions begin in positive Z
 - Given initial position and velocity
- Ions experience forces from environment
 - Other ions
 - Dust particle
 - External E field
 - Collisions
- Ions reset when leaving simulation
 - Boundaries
Parameters

- **Dust**
 - Charge = 30,000e
 - Radius = 8.89e-6 m

- **Ions**
 - Argon (mass = 6.63e-26 kg)
 - Charge = -e
 - Ion Temperature = 300 K

- **Electron Temperature = 46000 K**

- **Mach = 1.1**

- **Plasma Density Far from Dust = 1e15 particles/m³**
Forces

◦ Ion/Ion Interactions
 • Ions treated as Yukawa Particles (shielded by thermal electrons)

◦ Ion/Dust Interaction
 • Dust treated as point charge

◦ Ion/Electric Field
 • \(E(r) = \frac{en_i0\lambda_{De}}{\epsilon_0} \left(\frac{R}{\lambda_{De}} + 1 \right) \times \exp(-R/\lambda_{De}) \times \frac{\lambda_{De}}{r} \left[\sinh \frac{r}{\lambda_{De}} - \frac{\lambda_{De}}{r} \cosh \frac{r}{\lambda_{De}} \right] \)
Ion Density and Electric Potential

- Simulation sphere divided into grid spaces
 - Grid records the location of each ion over time

- Electric potential summed using a 3D grid
 - Shielded ion potentials
 - \(\Phi(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{N} \exp\left(-\frac{|\vec{r}-\vec{r}_i|}{\lambda_{De}}\right) \)
 - Coulomb potential of dust particle
 - External potential due to plasma electric field
Ion-Neutral Particle Collisions

- Plasma has neutral atoms
- Resonant charge exchange between atom and ion
- Gas density is related to ion mean free path
 - Current mean free path approximated to $0.75\lambda_{De}$
- Ions velocity is randomized at end of path to simulate collision
Results

Electric Potential in Simulation Sphere

Position of 100 ions at time: $t = 2.75 \times 10^{-5}$ seconds
Results (cont.)

Number Density of 1000 Ions in Simulation Sphere

Z Position (m)

Y Position (m)

10^{-3}

1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

10^{-3}

0

0.5

1

1.5

2

2.5

3
Results (cont.)
Results (cont.)

![Graph of Single Ion Distance from Dust Particle](image)

![Graph of Single Ion Velocity Relative to Dust Particle](image)
Discussion

- Electric potential values

- Ion density map
 - number of ions vs resolution

- Ion mean free path
 - $\tilde{\lambda} = \frac{kT}{P \pi \sigma \sqrt{2}}$ where T is ion temperature, P is pressure, and σ is effective collisional cross section
 - Gives very small value on order of 10^{-16}
Conclusion

◦ Increased number of ions needed
 • Piel uses 2^{16} ions

◦ Dust charging as future implementation

◦ Code can be translated to C++ and run on GPU
Acknowledgements

- CASPER
- Baylor University Department of Physics
- NSF Grant No. 1414523
- B-TRUE
Works Cited

