Abstract

Dusty (complex) plasmas are composed of weakly ionized gas and charged microparticles that represent the plasma state of soft matter. A growing field for physics research, measuring the spatial distribution of the electric field in the plasma sheath has been the goal of much research. A method based on the experimental investigation of vertical oscillations of a single particle in the sheath of a low-pressure radio-frequency discharge is proposed. The theory of anharmonic oscillations gives estimates for the first two anharmonic terms in an expansion of the sheath potential around the particle equilibrium.

Theory

Without excitation, a particle is levitated in the minimum of the potential well (z = 0) where:

\[M_g = Q E_0 \]

(1)

The electrostatic energy of the particle,

\[U = \frac{Q^2}{2}\epsilon_0 \frac{z}{z_0} \]

(2)

can be expanded around z = 0 in the series

\[U(z) = U_0 + z^2 \frac{U_0''}{2} + z^3 \frac{U_0'''}{6} + z^4 \frac{U_0'''}{24} + O(z^5) \]

(3)

Using the equilibrium condition

\[M_g = U_0' \]

(4)

And the definition of resonance frequency

\[M_{w0} = \frac{Q E_0}{U_0''} \]

(5)

We rewrite the potential as

\[U(z) = M \left(a z^2 + \frac{1}{2} w_0^2 z^2 + \frac{1}{3} z^3 + \frac{1}{4} z^4 \right) \]

(6)

Where alpha and beta are the anharmonic coefficients. Using perturbation theory, and solving for the Forced Damped Linear Oscillator, we solved for these coefficients and estimated the potential in a rather wide

Results

Acknowledgments

Special thanks to Sherri Honza, Truell Hyde, Lorin Matthews, “Mike” Ke Qiao, Zhiyue Ding, the rest of the CASPER faculty and staff, and my fellow REU students. This project was funded by the National Science Foundation.

References