Characterizing a Low Earth Orbit Dust Detector

Matthew Fournier, Jorge Carmona-Reyes, Mike Cook, Jimmy Schmoke, Lorin Matthews, Truell Hyde

Center for Astrophysics, Space Physics, and Engineering Research
One Bear Place 97310, Waco, Texas, 76798-7310 USA

Background Information

Low Earth Orbit (LEO) contains a large amount of man-made debris. NASA has developed a model of objects greater than 10 cm diameter (Fig. 1), but are unable to track small dust particles. The ARMADILLO CubeSat (Fig. 2) will detect dust particles in LEO and further develop NASA's model of the debris field around Earth.

Piezoelectric Dust Detector (PDD)

The POD, mounted on the forward velocity vector of the ARMADILLO, utilizes the piezoelectric properties of Lead Zirconate Titanate (PZT) to detect micron size particle impacts. Stress applied to the PZT crystal structure produces an electrical field that can be converted into signal data. The PDD is comprised of a circuit board stack, a 3x3 PZT Main Detector Unit (MDU), a single PZT Secondary Detector Unit (SDU), and a detection Grid (Figs. 3-6).

Equipment

A Single-Stage Light Gas Gun (Fig. 7) using compressed Nitrogen was utilized to simulate dust impacts on the MDU. Contains interchangeable barrels, a dual laser fan velocity detection unit, and a vacuum pump to depressurize system to 200 mTorr.

Computer Programs

The PDD is controlled through a Linux command shell run by Oracle VirtualBox. The user can input a set range value, as well as a minimum threshold detection value. The user then enables the PDD to detect impact triggers, after which the system shuts down. Data must be extracted before the system can detect another impact. The data is then analyzed through a MATLAB program.

Data Analysis

Raw data is given as a set of 2048 data points, which are multiplied by an Analog to Digital Converter (ADC) quantization value, then plotted as a Time vs. Amplitude graph (Fig. 8).

After the FFT is performed, a Butterworth Filter of 80-110 kHz is applied to the data to produce Figure 10. The PZT plates have a primary harmonic resonance frequency of 98 kHz, as given by the plate manufacturer, so the maximum recorded amplitude is extracted from that area.

For a single impact, this analysis process is simultaneously repeated 9 times over, once for each PZT. The maximum recorded amplitude usually indicates the PZT that was impacted, but graphs still require a visual inspection to ensure proper analysis. Frame impacts or noise may cause false triggers to the system, so the data must be double checked for actual impact data, as there will be no way to physically inspect the PDD once it is in space.

Pellet Firing Tests

Initial shots were fired with aluminum pellets against a paper target. To preserve durability of MDU sensor, smaller and lighter Teflon pellets were fired, they being the smallest size able to be detected by the dual laser fan. See Table 2 for values. Figure 11 resulted from a day of firing, which, despite having numerous broken plates, continues to emit signals almost indistinguishable from unbroken plates.

Dust Firing Tests

Data for lower energy impacts was required, so the PZT plates on the MDU were replaced with new plates. Copper dust was unable to trip an impact, so 4-7 SS pellets were fired “shotgun” style at the MDU. The size of the pellets was too small for the lasers to detect their velocity (Fig. 12), thus, velocity calculations used a Maxwellian distribution for the impacts registered (Table 4). These tests did not break any PZT plates.

Further Research & Testing

Use of either a high-speed camera, a laser strobe light combined with an open shutter camera photo streak, or a tighter laser optics system will allow for detection of small particle velocities. Testing of the detection Grid will also be performed to determine particle velocities.

The end goal is to create "signature" maps for all 9 PZT’s located on the MDU. These maps will be used to compare data with space impacts once the CubeSat is launched into orbit. Space impacts data will then be used to develop NASA’s dust debris model to help prevent further damage to orbital equipment.

References

Frank Dalton III, Grant Richter, Ben Martinis, James Schmoke, Mike Cook, Jorge Carmona-Reyes, Truell Hyde, PDD Dust Detector, Final Project Report, CASPER, AU, August 2014

www.baylor.edu/CASPER

One Bear Place 97310, Waco, Texas, 76798-7310 USA