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ABSTRACT / ioassessment is used worldwide to monitor
aquatic health but is infrequently used with risk-assessment
objectives, such as supporting the development of defensible,
numerical water-quality criteria. To this end, we present a gen-
eralized approach for detecting potential ecological thresholds
using assemblage-level attributes and a multimetric index (In-
dex of Biological Integrity—IBI) as endpoints in response to
numerical changes in water quality. To illustrate the approach,
we used existing macroinvertebrate and surface-water total
phosphorus (TP) datasets from an observed P gradient and a
P-dosing experiment in wetlands of the south Florida coastal
plain nutrient ecoregion. Ten assemblage attributes were iden-
tified as potential metrics using the observational data, and

five were validated in the experiment. These five core metrics
were subjected individually and as an aggregated Nutrient–IBI
to nonparametric changepoint analysis (nCPA) to estimate
cumulative probabilities of a threshold response to TP.
Threshold responses were evident for all metrics and the IBI,
and were repeatable through time. Results from the observed
gradient indicated that a threshold was �50% probable be-
tween 12.6 and 19.4 �g/L TP for individual metrics and 14.8
�g/L TP for the IBI. Results from the P-dosing experiment re-
vealed �50% probability of a response between 11.2 and
13.0 �g/L TP for the metrics and 12.3 �g/L TP for the IBI.
Uncertainty analysis indicated a low (typically �5%) probability
that an IBI threshold occurred at � 10 �g/L TP, while there
was �95% certainty that the threshold was � 17 �g/L TP.
The weight-of-evidence produced from these analyses implies
that a TP concentration � 12–15 �g/L is likely to cause deg-
radation of macroinvertebrate assemblage structure and func-
tion, a reflection of biological integrity, in the study area. This
finding may assist in the development of a numerical water-
quality criterion for TP in this ecoregion, and illustrates the util-
ity of bioassessment to environmental decision-making.

Bioassessment has become a widely accepted tech-
nique for monitoring aquatic health in streams, lakes,
and wetlands throughout the world (Rosenberg and
Resh 1993). Bioassessment has a long history in Europe
(reviewed by Cairns and Pratt 1993) and has more
recently become popular in North America, largely in
response to the mandate of §101(a) of the Clean Water
Act (CWA) to restore and maintain the biological in-
tegrity of the USA’s waters (Karr 1981). One bioassess-
ment approach that has received considerable atten-
tion in the USA is the multimetric approach (sensu
Karr 1981). Multimetric indices, such as the Index of
Biological Integrity (e.g., Karr and Chu 1997), are an
aggregation of a suite of biological attributes that rep-

resent key elements of structure or function of an
aquatic assemblage and show a consistent, predictable
response to human influence. The strength of multim-
etric assessments lies in their ability to integrate multi-
ple facets of biological condition (Barbour and others
1995), and thus provide an overall indication of biolog-
ical integrity (Karr and Dudley 1981; Angermeier and
Karr 1994).

One potentially important but underutilized appli-
cation of multimetric bioassessment is supporting the
development of numerical water-quality criteria (Milt-
ner and Rankin 1998; Dodds and Welch 2000). The
premise of bioassessment is that resident biota in a
water body are natural integrators of environmental
conditions and thus can reveal the effects of episodic
changes in water quality as well as cumulative pollution
(Rosenberg and Resh 1993). Nevertheless, develop-
ment of water-quality criteria has historically been
based on laboratory tests on individual species or solely
on chemical endpoints without accounting for the as-
semblage-level consequences (Barbour and others
2000). The United States Environmental Protection
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Agency (USEPA) has recognized the shortcomings of
this former approach and its inconsistency with goals of
the CWA (USEPA 1998a). In response, the USEPA has
issued a comprehensive plan for the development of
scientifically defensible, numerical water-quality crite-
ria. The plan emphasizes the need for the inclusion of
assemblage-level endpoints in criteria development,
and that the criteria need to be stratified into different
regions and types of water bodies (USEPA 1998a). Met-
rics used in bioassessment may be well suited for this
purpose.

Here we extend the multimetric bioassessment con-
cept to directly supporting the development of numer-
ical water quality criteria (Barbour and others 1995).
Unlike traditional multimetric approaches, which are
based primarily on observational data, our approach
relies on a coupling of observational and experimental
datasets to elucidate potential cause-effect linkages
(e.g., Daehler and Strong 1996; Lemly and Richardson
1997; Beyers 1998; Adams and Greeley 2000). This
approach allows the development of metrics that are
diagnostic and stressor-specific, a limitation of most
bioassessment techniques in use today. For example,
multimetric indexes have historically been developed
along gradients of general types of human influence
(e.g., urban land-use) over a broad geographic area
(Karr and Chu 1997). While the description of biotic
responses to general disturbance is useful for assessing
status and trends of aquatic health, these assessments
were not developed to characterize the effects of spe-
cific stressors on biological endpoints (Norton and oth-
ers 2000; USEPA 2000b; Griffith and others 2001).
Thus, traditional multimetric indexes have a limited
capacity to diagnose causes of impairment or estimate
the risk associated with a stressor (Suter 2001). There-
fore, our goal was to identify biological attributes that
responded to a specific stressor in a specific region and
water body type. These attributes would serve as mea-
surement endpoints to estimate levels of a stressor that
may result in a high risk of degradation to biological
integrity (USEPA 1998b).

To illustrate the approach, we estimated levels of
surface-water total phosphorus (TP) that affected mac-
roinvertebrate assemblages in wetlands of a nutrient-
sensitive ecoregion using existing, published datasets
(King and Richardson 2002; Qian and others, in press;
King and Richardson, in press). We defined macroin-
vertebrate structure and function as our assessment
endpoint, assemblage attributes as measurement end-
points, and TP as the stressor—however, any biological
endpoint or stressor of concern could be substituted.
Ultimately, the broad objective of this paper is to show
how assemblage-level data can be used in a risk-based

framework to quantify potential ecological thresholds,
which, in turn, can be used to support environmental
decision-making.

Methods

Study Area

Data used for this study were collected in Water
Conservation Area 2A (WCA-2A) in the northern Ever-
glades of Florida, USA (26° 15' N, 80° 23' W). WCA-2A
is located in the south Florida coastal plain nutrient
ecoregion, an area considered P-sensitive by USEPA
(2000a). WCA-2A is a 43,280 ha diked wetland land-
scape, with water-control structures governing the in-
flow and outflow of surface water. Inflow primarily
occurs along the northern levee through three water-
control structures (S10-A, C, and D) on the Hillsboro
Canal, a conduit for outflow from Lake Okeechobee
and P-enriched runoff from the Everglades Agricultural
Area (EAA). Inflow from the Hillsboro Canal has in-
duced a steep longitudinal eutrophication gradient in
WCA-2A due primarily to excessive inputs of P (SF-
WMD 1992). Surface-water and soil P has been shown
to be elevated above natural, background concentra-
tions up to 7 km into the interior of WCA-2A (e.g.,
DeBusk and others 1994; McCormick and others 1996;
SFWMD 2000). TP in these interior, reference areas of
WCA-2A typically ranges between 5–10 �g/L, while
often exceeding 100 �g/L in areas near inflow struc-
tures on the Hillsboro Canal (Vaithiyanathan and Ri-
chardson 1998; SFWMD 2000). Maps and greater detail
about physical and chemical characteristics of the study
area are provided in Davis and Ogden (1994), Richard-
son and others (1999), SFWMD (2000), and King and
Richardson (2002).

Observational Data

The first dataset was observational and collected
along a 10-km TP gradient in WCA-2A by King and
Richardson (2002). In this study, 126 stations were
sampled for surface-water TP (�g/L) and macroinver-
tebrate assemblage composition (density of taxa). Sam-
pling stations extended from a highly impacted region
near the canal inflow structures into the interior of
WCA-2A, which was defined as a reference area (e.g.,
SFWMD 2000; King and Richardson 2002). For this
analysis, we only used stations located in open-water
sloughs (n � 37) to reduce variability associated with
different habitats and because the experimental data
also were limited to sloughs.

Surface-water TP sample collection, sample storage,
and analysis (external standards, blanks, spikes) were in
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accordance with QA/QC protocols mandated by the
Florida Department of Environmental Protection and
standard methods (APHA 1992). Due to the large spa-
tial extent of this study, TP was collected only once
during October 1998. TP concentrations at slough sta-
tions ranged from 4.5 to 50.4 �g/L, consistent with
long-term observations for sloughs along this P gradi-
ent (SFWMD 2000).

Macroinvertebrate sampling and sample processing
were based on a slight modification of protocols used
by FDEP (1996; SOP #BA-7, 8) and USEPA (1997b;
Barbour and others 1999). A D-framed dip net was used
to collect a 1.5-m 2 composite sample from each station.
Sampling was conducted in October of 1998, simulta-
neous with TP collections. Macroinvertebrates were
identified to the lowest practical taxonomic level (usu-
ally species), and data were expressed as number of
individuals/m 2. A total of 202 taxa from 37 samples
were included in the slough-station dataset. Greater
detail on methods is presented in King and Richardson
(2002).

Experimental Data

The experimental dataset was obtained from a P-
dosing study in the interior, reference area of WCA-2A
where TP concentrations average � 10 �g/L (Vaithiy-
anathan and Richardson 1998; Richardson and others
2000; King and Richardson, in press; Qian and others,
in press). Two P-dosing sites, each with six mesocosms
(12 mesocosms in total), were constructed in adjacent
open-water sloughs in 1992. Mesocosms were 2-m wide
and 8-m long flumes and were constructed around
natural, undisturbed slough habitat. Mesocosms were
oriented parallel to surface-water flow and closed at the
upstream end. P was dosed from the closed end of each
mesocosm downstream toward the open end. P was
dosed in the form of soluble reactive phosphate (SRP)
continuously from 1992–1998. Each flume was assigned
one of six P treatments, ranging from walled and un-
walled control treatments (no P added above back-
ground concentrations; 0.25 g/m 2/y TP) up to 8.2
g/m 2/y P. This design created experimental P gradi-
ents both among and within mesocosms (i.e., gradients
in concentrations down the length of each flume due to
uptake and dilution).

Sampling stations were established at positions 2, 4,
and 6 m down the length of each mesocosm (36 sam-
pling stations in total). Thus, measured P concentra-
tions at stations were a product of physical, biogeo-
chemical, and biological factors that resulted from
different, controlled input concentrations, just as along
the P gradient (Richardson and others 2000). For this
analysis, this was desirable because our research ques-

tion specifically dealt with estimating an ecological
threshold based on a measured concentration of TP in
surface waters, as mandated by the Everglades Forever
Act (1994) and USEPA (2000a). Because each station
had unique TP and macroinvertebrate data associated
with it and spatial autocorrelation among stations was
minimal (King and Richardson, in press), stations
could validly be considered independent observations
(Hurlbert 1984).

Surface-water TP was collected biweekly at each sam-
pling station throughout the majority of the six-year
experiment following QA/QC protocols used in the
observational gradient study. Because there were many
observations from each station, TP data were expressed
as geometric means in accordance with the Everglades
Forever Act (EFA 1994) and USEPA guidelines
(2000a). Geometric means were calculated for a six-
month period prior to each macroinvertebrate collec-
tion, and provided an integrated estimate of long-term
TP exposure at each station (note, however, that
USEPA [1998b] recommends arithmetic means for de-
scribing chronic exposure, thus geometric means were
conservative estimates of TP exposure). Geometric
means of TP ranged from 5.8 to 60.9 �g/L among
stations, very similar to the range of values observed
along the P gradient.

Macroinvertebrates were collected four times during
1996–1998 (September 1996, January 1997, February
1998, September 1998) at each station using FDEP
protocols (1996; SOP #BA-13). Macroinvertebrates
were collected using Hester-Dendy (HD) artificial sub-
strates because active sampling methods (e.g., dip nets)
would have significantly disturbed the habitat in the
experimental mesocosms. King (2001) demonstrated
that HD samples were effective for characterizing the
macroinvertebrate assemblage of Everglades sloughs.
In addition, assemblage attributes evaluated in the ex-
periment were required to respond in the same man-
ner (increase or decrease and temporal repeatability)
to TP as those measured along the observed gradient to
be considered metrics. Moreover, we were not inter-
ested in comparing the absolute values of attributes
between the two studies; rather, we were interested in
the levels of TP that elicited changes in attribute values,
which is completely independent of any potential dif-
ferences in the magnitudes of attribute values. Thus,
any biases associated with differences in sampling meth-
ods between the two studies were eliminated because
attributes selected as metrics were demonstrated to
show the same response using both methods.

A composite of three HD samples were collected
from each station (n � 36) on each date (n � 4).
Macroinvertebrates were identified to the lowest prac-
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tical taxonomic level (usually species), and expressed as
number of individuals/m 2. A total of 123 taxa from 144
samples were included in the experimental dataset.
Comparisons of macroinvertebrate assemblage compo-
sition between unwalled and walled control mesocosms
showed that composition in the walled controls was not
different than the unwalled controls (King and Rich-
ardson, in press). Thus, the experiment was represen-
tative of the reference condition. Greater detail on the
P-dosing experiment is provided in Richardson and
others (2000), King (2001), and King and Richardson
(in press).

Metric Development and Analytical Approach

Our approach was patterned after the conceptual
framework of multimetric development outlined by
Barbour and others (1995). Our initial step (Step 1)
was to select a suite of assemblage-level attributes and
use the observational data to evaluate the response of
these attributes to TP (Figure 1). We supposed that if
attributes did not exhibit a response in the “real” world,
then these should not be tested experimentally
(Daehler and Strong 1996; Lemly and Richardson
1997; Adams and Greeley 2000). Thus, Step 2 was the

identification of a suite of candidate metrics, which
would then be scrutinized more fully using the exper-
imental data. Attributes that met several selection cri-
teria using the experimental data were subsequently
validated as TP metrics (Steps 3 and 4). Selected met-
rics were aggregated into an IBI-type multimetric in-
dex, which we termed a Nutrient-IBI, in addition to
being assigned as individual biological endpoints for
analysis (Step 5). Data from both the observational and
experimental studies were then analyzed using change-
point analysis to estimate levels of TP that could be
expected to change biological condition (Step 6). We
defined a detectable change in the mean and/or vari-
ance of an attribute of macroinvertebrate structure and
function, coupled with uncertainty estimates, as an in-
dication of an ecological threshold response to TP.
Because our data spanned observed and experimental
gradients from reference conditions (TP � 10 �g/L) to
highly P-enriched conditions, we argued that such
changes represented a significant deflection from the
reference condition, and consequently, degradation of
biological integrity. This argument was also consistent
with the Everglades Forever Act (1994), which man-
dated that a TP criterion for this region should not
result in an imbalance of flora and fauna representative
of the natural Everglades. Thus, in the final step (Step
7) we synthesized results from the changepoint analysis
to identify levels of TP that were likely to be protective
of biological integrity, as reflected by the metrics of
macroinvertebrate structure and function.

Step 1. Select assemblage attributes. The first step to-
ward metric evaluation was to select a variety of at-
tributes that represented key elements of the structure
and function of macroinvertebrate assemblages found
in the reference area of the observed P gradient. At-
tributes were selected from four general classes: (1)
taxonomic composition, (2) species richness and diver-
sity, (3) tolerance/intolerance, and (4) trophic struc-
ture (Barbour and others 1999). In all, over 50 at-
tributes were selected, with the majority falling under
the taxonomic composition category. As recommended
by Barbour and others (1995), we used relative (per-
cent) rather than absolute abundance in calculating
attributes except those of richness/diversity because
percentage metrics have been shown to be more robust
and reliable and were more likely to reflect structural
changes resulting from nutrients. Barbour and others
(1999) provided a summary of potential benthic met-
rics, which helped direct our selection process.

Composition attributes, expressed as percent of total
numerical abundance, were selected according to the
dominant major taxonomic groups present in the
study, which corresponded to families (e.g., percent

Figure 1. Conceptual framework for developing numerical
water-quality criteria using bioassessment.
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Chironomidae), orders or classes (e.g., percent Odo-
nata), or a combination of higher groups with relatively
similar habits or food preferences (e.g., percent
Microcrustacea).

An additional composition attribute was Bray-Curtis
dissimilarity (BCD, percent dissimilarity), a coefficient
shown to be a robust and ecologically interpretable
index of changes in taxonomic composition (Faith and
others 1987; Legendre and Legendre 1998). BCD was
calculated using the taxa (n � 202) abundance data
(standardized using log 10 (x � 1) transformation; Leg-
endre and Legendre 1998). Because it is multivariate,
BCD was ordinated using nonmetric multidimensional
scaling (nMDS), rotated using varimax rotation, and
extracted as univariate scores along nMDS Axis 1 (Mc-
Cune and others 1997; Legendre and Legendre 1998).
The objective in the use of nMDS was to recover a
multivariate assemblage pattern that corresponded to a
gradient in TP concentration, and to produce individ-
ual sample scores that could be used for analysis.

Richness and diversity attributes included total num-
ber of taxa (richness per unit area, or areal richness;
Larsen and Herlihy 1998), numerical richness (total
number of taxa per 300 individuals, or NR300; Larsen
and Herlihy 1998), Shannon-Wiener diversity (H'), and
number of taxa belonging to several major taxonomic
groups (e.g., number of taxa of Chironomidae).

Tolerance/intolerance attributes were derived using
a list of taxa (species) shown to either disappear at low
levels of P enrichment or proliferate with high levels of
P enrichment in the Everglades (King 2001). A rela-
tively small proportion (� 20%) of taxa were consid-
ered either highly tolerant or highly sensitive. These
attributes were expressed as the percent of total numer-
ical abundance comprised of taxa shown to be tolerant
or sensitive to P enrichment.

Trophic-structure attributes were selected according
to the predominant functional feeding groups in the
study area, which were predators, filterers, scrapers,
and gatherers (Merritt and Cummins 1996; Barbour
and others 1999). Trophic attributes were expressed as
percent of total numerical abundance.

Step 2: Identify potential metrics. As recommended by
several authors who have developed multimetric in-
dexes (Barbour and others 1996; Fore and others 1996;
Karr and Chu 1997), we graphically evaluated the re-
sponse of assemblage attributes to TP concentrations
along the observed gradient. Attributes with values that
either increased or decreased monotonically with TP
were identified as potential metrics. Attributes that ei-
ther did not respond or showed very weak responses
were eliminated from consideration. Attributes that re-

sponded unimodally were also discarded because values
were similar at low and high concentrations of TP.

Step 3: Validate metrics. The suite of potential metrics
identified from the observed gradient were further eval-
uated using the experimental data. We graphically ex-
amined each attribute separately for each of the four
sampling dates. Attributes were discarded if they did
not respond, showed very weak responses, or showed
unimodal responses to TP on more than one sampling
date. Attributes that responded in a different direction
than the observed gradient (e.g., an increase with TP in
the experiment while a decrease with TP along the
observed gradient) were deemed too variable and also
discarded. Thus, attributes that met all criteria as met-
rics responded to TP (1) in the real world, (2) in an
experimental setting, (3) in the same direction in both
studies, and (4) repeatedly over time.

Step 4: Eliminate redundant metrics. Metrics used in a
multimetric index are intended to individually capture
some variation not explained by other metrics. Col-
linear metrics do not add new information to an index,
and may weight it too heavily toward one facet of bio-
logical condition. Thus, it was important to cull metrics
that were excessively redundant before proceeding. A
Pearson product-moment correlation matrix was used
to evaluate collinearity among metrics (r � 0.90; Klein-
baum and others 1988; Barbour and others 1996).
When pairs or sets of metrics were deemed collinear,
the metric that showed the strongest, most consistent
response to TP was retained.

Step 5: Aggregate core metrics into IBI. Metrics that met
all selection criteria formed a core set to construct a
multimetric index, which we termed a Nutrient Index
of Biological Integrity (Nutrient-IBI). Typically, metric
values are assigned a tiered score of 1, 3, or 5, ranging
from poor to good, based on an arbitrary cutoff for
each of the three tiers (Barbour and others 1995; Karr
and Chu 1997). While this approach has been shown to
be effective, we chose to scale the continuous metric
values from 0 to 1 (low to high condition) to avoid
making value judgments about tiers of condition (Suter
2001). This scaling procedure gave each metric contin-
uous values and equal weight in the IBI. Metrics with
low values at low TP were first inverted so that the raw
minimum value was scaled to highest condition. The
IBI score was the sum of all metric values for each
observation, scaled from 0 to 5 (5 � highest condition).

Step 6: Estimate changepoints. We estimated potential
threshold responses in the measurement endpoints to
numerical levels of TP using nonparametric change-
point analysis (nCPA), a technique explicitly designed
for detecting threshold responses using ecological data
(Qian and others, in press). Nonparametric change-
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point analysis is a derivative of a family of techniques
historically used in classification and divisive partition-
ing of ecological data (e.g., Pielou 1984). This analysis
is based on the idea that a structural change in an
ecosystem may result in a change in both the mean and
the variance of an ecological response variable used to
indicate a threshold. When observations are ordered
along a stressor gradient, a changepoint is a value that
separates the data into the two groups that have the
greatest difference in means and/or variances. This can
also be thought of as the degree of within-group vari-
ance relative to the between group variance, or deviance
(D) (see Venables and Ripley 1994 and Qian and oth-
ers, in press, for details). Analytically, the nCPA exam-
ines every point along the stressor gradient and seeks
the point that maximizes the reduction in deviance.
Thus, each stressor value is a potential changepoint and
is associated with a deviance reduction:

�i � D � �D � i � D � i�, (1)

where D is the deviance of the entire data set y 1, ���, y n,
D �i is the deviance of the sequence y 1, ���, y i, and D �i

is the deviance of the sequence y i�1, ���, y n, where i �
1, ���, n. The changepoint r is the i value that maximizes
� i : r � max i� i.

There is one particular value of the predictor y (in
this case, TP) that maximizes the reduction in deviance
in the response data (in this case, the selected metrics);
however, there is uncertainty associated with that value.
It is unlikely that any one value of TP is the only value
that could represent a changepoint. In reality, depend-
ing on the acuteness of the biological change in re-
sponse to TP, several observations of TP could repre-
sent the changepoint, each with varying probabilities.
Thus, to assess the risk associated with particular levels
of TP, nCPA incorporates estimates of uncertainty in
the changepoint (Qian and others, in press). These
estimates are calculated using a bootstrap simulation
(Efron and Tibshirani 1993). This simulation resa-
mples (with replacement) the original dataset and re-
calculates the changepoint with each simulation. Boot-
strap simulations are repeated 1,000 times. The result is
a distribution of changepoints that summarizes the un-
certainty among multiple possible changepoints. This
uncertainty is expressed as a cumulative probability of a
changepoint based on the relative frequency of each
changepoint value in the distribution. To illustrate, a
cumulative probability curve is shown in Figure 2 for
the percent sensitive taxa metric in response to TP from
the observed P gradient. Here, there is at least a 5%
cumulative probability, or risk, that a detectable change
in the percentage of sensitive taxa occurs at or below
13.3 �g/L TP. In other words, 5% of the bootstrap

simulations resulted in a changepoint that was � 13.3
�g/L TP. To fully visualize the range of uncertainty, the
cumulative probability curve is extended to the highest
level of TP that resulted in a changepoint in at least one
of the simulations (Figure 2). Thus, the cumulative prob-
ability curve depicts the range of TP values that could
potentially represent a changepoint and illustrates a cu-
mulative level of risk associated with each TP value.

An additional factor to consider when using nCPA is
an estimate of the probability of Type I error. A 	 2 test
statistic (1 df) can be used to evaluate the likelihood
that an observed changepoint is real (Qian and others,
in press). However, we only used this statistic to help
assess the likelihood that changepoints with relatively
wide cumulative probability distributions represented
real biological changes, as uncertainty around the
changepoint was a much more relevant issue (Suter
1996; Germano 1999; Johnson 1999).

Figure 2. Illustration of the cumulative probability of a
changepoint estimated for an individual metric in response to
surface-water TP. The cumulative probability curve describes
the cumulative risk of a change in a response variable (%
sensitive taxa, y-axis [right side]; depicted by filled circles)
associated with a range of stressor values. Cumulative proba-
bilities are calculated using 1,000 bootstrap simulations. Any
given location along the curve corresponds to a specific cu-
mulative probability of a changepoint (y-axis [left side]) at a
specific level of TP (x-axis). In this example, there was at least
a 5% cumulative probability, or risk, that a detectable change
in the mean and/or variance of the % sensitive taxa metric
occurred at or below 13.3 �g/L TP. In other words, �5% of
the bootstrap simulations resulted in a changepoint that was
� 13.3 �g/L TP. Similarly, there was �50% risk of a change-
point � 14.6 �g/L TP, while there was �95% probability that
a changepoint occurred � 16.9 �g/L TP. Data are from the
observed P-gradient study.
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Changepoint analysis works best when stressor-re-
sponse relationships are nonlinear or heteroscedastic,
properties very common to ecological data. For strong
linear relationships, the analysis will find a significant
changepoint but uncertainty will be high. Preliminary
examination of the observational and experimental
data revealed that all relationships were nonlinear
and/or heteroscedastic, thus were well suited for nCPA.
We estimated changepoints for individual metrics and
the IBI using the observational and experimental data-
sets. Analyses were conducted for each date separately
using the experimental data to better evaluate temporal
variability in threshold responses. Analyses were con-
ducted using the custom function “chngp.nonpar”
(Qian and others, in press) in S-Plus 2000 (Mathsoft,
Inc., Seattle, WA, USA).

Step 7: Identify criteria protective of biological integrity.
We graphically concatenated the results from the ob-
servational and experimental studies to help identify
levels of TP that were protective of biological integrity,
as reflected by the metrics of macroinvertebrate struc-
ture and function. We interpreted a cumulative proba-
bility of a changepoint �50% to imply that a threshold
response for a certain endpoint was more likely than
not to occur at the respective predictor level of TP. We
evaluated the range of TP levels that resulted in a
�50% likelihood of a threshold response for individual
metrics and the IBI, and contrasted this range of values
between the observational and experimental data. Sim-
ilarly, we contrasted the range of TP levels that had low
(5%) and high (95%) probabilities of resulting in a
threshold response to better characterize the risk to
macroinvertebrate structure and function. However, it
is important to note that the level of risk that scientists,
managers, and decision-makers may be willing to ac-
cept will most certainly depend on a variety of ecolog-
ical, economic, and social factors. Thus, our evaluation
of cumulative probabilities of a changepoint at 5%,
50%, and 95% should not be implied to be an endorse-
ment of these levels as the only levels of risk that should
be evaluated in the criteria development process. Our
approach provides a continuum of risk for each level of
a stressor, and our focus on these three levels was
largely necessitated by the limitation in presenting lev-
els of risk for every possible changepoint.

Results

Ten of the metrics evaluated using the observational
P-gradient data showed clear responses to TP and were
identified as potential metrics. Of these 10 candidate
metrics, five exhibited consistent responses to TP in the
P-dosing experiment: BCD, percent tolerant taxa, per-

cent sensitive taxa, percent Oligochaeta (aquatic
worms), and percent predators. Results from correla-
tion analysis among these five metrics indicated that no
pair was collinear (r � 0.90), thus each metric was
sufficiently unique to retain as core metrics. These five
metrics were subsequently analyzed individually and as
an aggregated Nutrient-IBI using nCPA.

Changepoints were detected for all selected metrics
and the IBI using the observational P-gradient data
(Table 1). Probabilities of Type I error (P in Table 1)
were all quite low, indicating that it was highly likely
that changepoints were real and represented a thresh-
old response. The cumulative probability distributions
generated from nCPA indicated that a changepoint was
�50% probable between 12.6 and 19.4 �g/L TP for
individual metrics and 14.8 �g/L TP for the IBI (Table
1, Figures 2–5 ). These changepoints represented bio-
logically significant shifts in assemblage structure and
function. Sensitive taxa dropped from a mean of over
21% to only 1.3% above 14.6 �g/L TP (Table 1, Figure
2). Conversely, tolerant taxa increased from only 2.2%
to nearly 20% above 17.7 �g/L TP (Table 1, Figure 3).
Percent Oligochaeta, a group of aquatic worms, nearly
doubled when TP exceeded 13 �g/L. Mean BCD values
(nMDS Axis 1 scores) were highly negative to the left of
the 50% probability of a changepoint, while highly
positive to the right, indicating a markedly different
species assemblage once a cumulative probability of
50% had been exceeded (Table 1). Elevated TP also
resulted in functional changes, reducing the propor-
tion of predators in the assemblages from a mean of
9.2% to only 3.4% at TP levels above 12.6 �g/L. Finally,
mean IBI scores above 14.8 �g/L were reduced by
one-half when compared to IBI scores below that con-
centration (Table 1, Figure 4). In addition to these
changes in means, all of these metrics exhibited distinct
changes in variances that corresponded to TP change-
points (e.g., Figures 2–4 ).

Results from the P-dosing experiment mirrored
those of the observed P gradient. Changepoints were
evident for all metrics and the IBI, and were repeatable
through time. Overall, median threshold responses
from the four dates were �50% probable between 11.2
and 13.0 �g/L TP for individual metrics and 12.3 for
the IBI (Table 1, Figures 3–5 ). Means and variances of
metric values above and below the 50% level of risk
were very similar to the biologically significant changes
observed along the P gradient, and highly suggested
that the changepoints represented threshold responses
to TP (Table 1).

The cumulative probability distributions of change-
points indicated that there was a relatively tight range
of TP levels likely to result in degradation in biological
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condition (Table 1, Figures 3–5). Both the observa-
tional and experimental data revealed that there was a
low (5%) probability that a threshold response oc-
curred � 10 �g/L TP for some metrics. There was high
(�95%) certainty that the threshold was � 20 �g/L TP
for the majority of individual metrics. Aggregating the
individual metrics into the IBI reduced this range of
variability, however. Results indicated a 5% probability
that a threshold response for the IBI occurred at or
below 9 �g/L TP (experimental) and 12.3 �g/L TP
(observational), whereas there was �95% certainty that
a threshold response occurred � 15 �g/L TP (experi-
mental) and � 17 �g/L TP (observational) (Table 1,
Figures 4 and 5). Although these differences were rela-
tively small, the lower changepoints from the P-dosing

experiment than the observed P gradient implied that
changepoints from the P-dosing experiment might have
been conservative estimates of TP levels that may pose a
risk to macroinvertebrate structure and function.

Discussion

Can Bioassessment Be Used To Develop Numerical
Water-Quality Criteria?

Bioassessments generally are performed with the in-
tent of detecting impairment in an aquatic ecosystem,
which usually implies degraded water quality. Despite
the fundamental linkage between bioassessment and
water quality, there are surprisingly few examples of

Table 1. Results from nonparametric changepoint analysis showing cumulative probabilities of a threshold
response for individual metrics and the aggregated IBI at specific levels of TP from the experimental and
observational studies

Metric Study (Date)

Cumulative Probability
of a Changepoint

(TP, �g/L)

P*

Mean Metric Value
(
 1 SE)a

5% 50% 95% Left Right

Bray-Curtis Dissimilarity (BCD)b Experimental (Sep 1996) 10.1 12.3 18.4 0.0012 �0.75 (0.16) 0.44(0.15)
Experimental (Jan 1997) 11.1 11.6 12.8 0.0001 �0.95 (0.14) 0.48(0.09)
Experimental (Feb 1998) 10.1 10.5 10.7 0.0007 �0.80 (0.20) 0.54(0.10)
Experimental (Sep 1998) 8.3 10.8 13.9 0.0006 �0.79 (0.23) 0.46(0.12)
Observational (Oct 1998) 15.2 19.4 21.4 0.0002 �0.98 (0.13) 0.61(0.25)

% Sensitive Taxa Experimental (Sep 1996) 7.4 14.5 25.7 0.1207 9.2 (3.8) 3.4 (2.3)
Experimental (Jan 1997) 8.7 11.3 11.8 0.0032 21.3 (4.8) 8.0 (1.5)
Experimental (Feb 1998) 7.1 11.4 18.7 0.0122 7.9 (1.6) 3.6 (1.1)
Experimental (Sep 1998) 6.8 9.8 11.6 0.0414 4.7 (1.7) 0.9 (0.4)
Observational (Oct 1998) 13.3 14.6 16.9 0.0013 21.2 (3.1) 1.3 (1.1)

% Tolerant Taxa Experimental (Sep 1996) 10.2 12.1 19.0 0.0016 5.6 (2.4) 24.2 (3.3)
Experimental (Jan 1997) 11.3 14.0 16.4 0.0008 7.5 (1.8) 23.3 (3.4)
Experimental (Feb 1998) 9.1 10.7 12.1 0.0162 3.3 (1.5) 18.5 (4.1)
Experimental (Sep 1998) 7.1 10.7 14.4 0.0098 7.2 (3.0) 20.9 (3.8)
Observational (Oct 1998) 14.6 17.7 25.5 0.0002 2.2 (1.2) 20.0 (5.0)

% Oligochaeta Experimental (Sep 1996) 9.6 13.3 25.7 0.0026 7.3 (6.2) 41.6 (8.4)
Experimental (Jan 1997) 8.8 12.7 18.1 0.0154 17.6 (5.0) 38.5 (7.0)
Experimental (Feb 1998) 9.0 18.4 21.6 0.0262 22.2 (4.2) 40.0 (7.2)
Experimental (Sep 1998) 8.3 12.6 13.9 0.0035 7.7 (4.4) 41.5 (6.0)
Observational (Oct 1998) 11.4 13.0 16.9 0.0212 33.9 (5.3) 57.9 (4.2)

% Predators Experimental (Sep 1996) 7.6 11.1 18.1 0.0162 21.0 (12.2) 4.7 (1.4)
Experimental (Jan 1997) 7.9 11.7 12.8 0.0006 18.3 (4.5) 5.0 (1.1)
Experimental (Feb 1998) 7.1 10.2 10.6 0.0221 8.7 (1.2) 4.4 (0.6)
Experimental (Sep 1998) 8.3 14.5 21.2 0.1694 9.4 (3.3) 5.6 (2.6)
Observational (Oct 1998) 8.9 12.6 16.4 0.0419 9.2 (3.7) 3.4 (1.2)

Nutrient Index of Biological
Integrity (Nutrient–IBI)

Experimental (Sep 1996) 11.9 13.6 13.8 0.0003 3.4 (0.2) 1.9 (0.1)
Experimental (Jan 1997) 9.7 11.7 12.8 0.0002 3.9 (0.2) 2.2 (0.1)
Experimental (Feb 1998) 9.1 10.6 12.1 0.0122 2.9 (0.2) 2.1 (0.1)
Experimental (Sep 1998) 10.0 13.0 14.2 0.0020 2.9 (0.1) 1.8 (0.1)
Observational (Oct 1998) 12.3 14.8 16.9 0.0004 3.0 (0.2) 1.5 (0.2)

*P � Probability of Type I error, indicating the likelihood that there was no changepoint in the response data.
aMean (
 1 SE) metric values to the left and right of the level of TP corresponding to �50% cumulative probability of a changepoint.
bBCD values were expressed as standardized nMDS Axis 1 scores (see Methods for greater detail).
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bioassessment used explicitly to support the develop-
ment of numerical water-quality criteria (see Dodds
and Welch 2000). One of the primary reasons for this is
that traditional bioassessments, such as multimetric ap-
proaches, are intentionally developed to capture the
effect of a wide range of stressors to biological integrity.
This lack of specificity results in ambiguity about the
potential cause(s) of impairment and, consequently,
the levels of a stressor that may result in a threshold
response. However, the results of our study provide
evidence the multimetric approach to bioassessment is
robust and appears to be easily adaptable to a particular
stressor, such as nutrients. We identified several at-

tributes of macroinvertebrate assemblages that re-
sponded to surface-water TP using observational, real-
world data. Experimental data provided evidence that
changes observed in the observational study were in-
deed due to P enrichment. Temporal replication from
the experiment also indicated that, despite seasonal
variation, attributes responded in a consistent direction
(increase or decrease) to TP. These core metrics also
responded repeatedly over time to TP. Finally, thresh-
old responses were detected at similar levels of TP
among different metrics and across several dates. Thus,
this approach was consistent with the water-quality cri-
teria development strategy proposed by the USEPA

Figure 3. Cumulative probabilities of
changepoints for the percent of tolerant
taxa metric in response to surface-water
TP. Results are shown for the observa-
tional P-gradient study and the four
dates from the P-dosing experiment.
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(1998a), as our findings (1) established a cause-effect
linkage between TP and biological attributes within a
given nutrient ecoregion, (2) estimated levels of TP
that may cause biological changes, and (3) estimated
uncertainty in TP levels that may lead to degradation of
biological integrity.

The use of ecological experiments may be the most
critical step in the validation of numerical criteria using
bioassessment. Descriptive, correlative studies are often
very useful for generating hypotheses but often are
insufficient for establishing cause-effect linkages (e.g.,
Beyers 1998). A number of recent studies have shown
creative ways to use descriptive biomonitoring data to

ascribe causation using a stressor-identification frame-
work (e.g., Norton and others 2000; Griffith and others
2001; Cormier and others 2002). However, without ex-
perimental evidence, it is still very difficult to eliminate
other potential causes of an observed biological re-
sponse to a candidate stressor (USEPA 2000b). More-
over, it is nearly impossible to quantify the uncertainty
associated with additive or synergistic effects of multiple
stressors in an aquatic ecosystem without first isolating
a single stressor using an experiment. This latter point
is particularly critical in the context of numerical crite-
ria development because the level of a stressor that
apparently results in an observed threshold response

Figure 4. Cumulative probabili-
ties of changepoints for the Nu-
trient-IBI in response to surface-
water TP. Results are shown for
the observational P-gradient
study, and the four dates from
the P-dosing experiment.

804 R. S. King and C. J. Richardson



may be confounded by another, perhaps unmeasured,
factor (Suter 2001). For these reasons, we highly rec-
ommend the collection of experimental data to sup-
port observed assessments used for numerical criteria
development.

Conversely, experimental studies suffer from some
important limitations. Most are not conducted at the
appropriate scale (e.g., watershed) and need to be
coupled with observational research to help validate
the applicability of experimental findings to the real
world (e.g., Daehler and Strong 1996; Lemly and Rich-
ardson 1997; Adams and Greeley 2000). In our ap-
proach, we relied on a descriptive study to identify
biological attributes that may have been affected by TP.
Once identified, these biological attributes were fur-
ther examined in a long-term P-dosing experiment to
corroborate their P sensitivity and estimate TP change-
points. Without the observational study, however, it
would have been difficult to extrapolate the experimen-
tal findings to the much larger scale of the study area.
By coupling the two studies, each provided evidence
that the other study could not, which made for a much
stronger case about the levels of TP that were likely to
degrade macroinvertebrate structure and function.

One potential criticism of our approach is that it
may be impractical for state, tribal, other regulatory
agencies that have limited funding to conduct long-
term exposure studies such as the P-dosing experiment
we illustrated here. While large-scale (spatial, temporal
or both) experiments are probably too costly in most
situations, small in situ microcosm or mesocosm studies
may provide sufficient evidence to support an observa-
tional finding. For example, Clements and others
(2002) provided an excellent illustration of the cou-

pling of small experiments with descriptive data. Here,
lab experiments, small in situ exposure experiments,
and large-scale observational studies afforded strong
inference about the levels of heavy metals that affected
biota in Rocky Mountain streams. Similar examples also
exist for nutrients (e.g., Hart and Robinson 1990;
Perrin and Richardson 1997; Lemly and King 2000).
Thus, it seems that experiments can be a practical
addition to the criteria development process if effi-
ciently and purposefully designed.

Detecting Threshold Responses with Changepoint
Analysis

Estimation of risk should be a critical step in devel-
oping numerical water-quality criteria. Risk analysis re-
quires a tangible, numerical estimate of the levels of a
stressor that are likely to result in an effect on an
assessment endpoint. However, the most commonly
employed types of data analyses—hypothesis-testing
statistics—are insufficient and possibly misleading
when used for this purpose (e.g. Germano 1999; John-
son 1999). Suter (1996) provided a thorough review of
the problems with hypothesis testing in ecological risk
assessment, most notably the inability of the approach
to provide a clear estimate of expected or observed
effects and associated uncertainties related to a predic-
tor variable. In contrast, our results suggest that nCPA
has potential to be a useful analytical tool in the devel-
opment of criteria because of the easily interpretable,
numerical estimates it affords. Rather than asking the
question “is there a statistically significant relationship
between predictor x and response y?” as implied with
most hypothesis-testing statistics, this risk-based analysis
more explicitly asks “what level of predictor x results in

Figure 5. Synthesis of results from the
P-gradient study and P-dosing study for
the identification of a TP criterion pro-
tective of biological integrity. Median
values from the four dates in the P-dos-
ing experiment were used for the �5%,
50%, and 95% cumulative probabilities.
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a threshold response of y, and how uncertain is this
threshold?” Using this analysis, we were able to identify
levels of TP that were likely to result in a threshold
response in the macroinvertebrate assemblage as well
as provide an estimate of the cumulative probability
that a particular level of TP would elicit a threshold
response. Although we included a 	 2 significance test
(1 df) to assess the likelihood that changepoint was
real, this test was of limited value because such tests
provide little information about the risk of a threshold
response at various levels of TP. Thus, we contend that
results from hypothesis testing fail to provide enough
information to decision-makers, and generally be
avoided for supporting the development of numerical
criteria.

Another advantage of nCPA is that it is particularly
appropriate for ecological data analysis because it
makes few assumptions about the distributional prop-
erties of data (Qian and others, in press). A deviance
reduction algorithm, nCPA considers both the mean
and the variance of response variables, contrary to most
parametric techniques that focus only on the mean
(Breiman and others 1984; Sokal and Rohlf 1995).
Most parametric techniques require that data meet the
assumptions of homogeneity of variances (e.g.,
ANOVA) or homoscedasticity (regression) despite the
fact that changes in the variance may be equally infor-
mative as changes in the mean (e.g., Palmer and others
1997). For example, in ecological risk assessment, a
fitted function that describes the dose-response rela-
tionship between a measurement endpoint and level of
exposure to a contaminant is often used to estimate the
magnitude of effect on the endpoint at a particular
contaminant concentration (effective concentration, or
EC) (Suter 1993). However, distributional properties of
most metrics used in bioassessment are not conducive
for these types of fitted models and, we argue, are not
appropriate. In our study, many threshold responses
were detected due to dramatic changes in variance in
metric values with increasing levels of TP (e.g., Figure
2). This change in variance would have violated the
assumptions of commonly employed parametric statis-
tics but was paramount to the detection of levels of TP
that resulted in a changepoint in our study.

While nCPA was effective in this study and has ad-
vantages over other many other methods for this appli-
cation, one potential criticisms of nCPA is that it may
not detect a low-level changepoint if a second, compet-
ing changepoint occurs at a higher concentration. First,
we recommend that all data be examined graphically
before any analysis is conducted so that the shape of the
response can be evaluated (e.g., Karr and Chu 1997). If
multiple changepoints are evident, a tree-based, recur-

sive approach (i.e., tree regression; Breiman and others
1984) can be used to help isolate the lower change-
point. Here, the model splits the data into multiple
subsets rather than just two. The subset of data above
the upper changepoint can be discarded, and nCPA
conducted on the lower subset of data. In this study, all
primary changepoints occurred at low concentrations,
although bootstrapping revealed that, in a few in-
stances, a second, slightly weaker change also occurred
at a higher concentration and subsequently skewed the
upper range of the cumulative probabilities (e.g., Fig-
ure 3). Because nCPA is an extension of recursive-
partitioning techniques such as tree regression, they
are compatible and may provide a tactical, conservative
means of detecting secondary changes at low concen-
trations if a primary response occurs at a greater con-
centration.

In our study, we defined macroinvertebrate struc-
ture and function as our assessment endpoint, and used
a stressor-identification process to select five individual
biological metrics and a multimetric index, the Nutri-
ent-IBI, as measurement endpoints. We analyzed the
individual metrics separately because we were con-
cerned about the effect of blending metrics into one
score on our threshold estimates. Of particular concern
was that some metrics might have responded at differ-
ent levels of TP, thus the IBI would have found the
middle of this response range and possibly underesti-
mated the risk posed by lower levels of TP. Conversely,
we recognized that aggregating the individual metrics
into the IBI might have increased the signal-to-noise
ratio and allowed us to detect assemblage-levels
changes that may have been clouded by variability at
the individual-metric level. In reality, most of the indi-
vidual attributes responded at a relatively similar levels
of TP as the IBI, but the IBI overall had a tighter range
of cumulative probabilities of a threshold response to
TP than the individual metrics. However, there was
modest deviation in the TP changepoints between the
IBI and some metrics, suggesting that aggregating the
responses into one index may have masked the varia-
tion in responses among individual attributes of the
macroinvertebrate assemblage. Considering that bio-
logical responses to other stressors in other regions
could lead to a wider range of changepoints than ob-
served in this study, it is important to recognize this
potential artifact of multimetric indexes. Moreover, the
reduction in variance of individual metric values that
invariably results from aggregating them into a multi-
metric index may actually eliminate biologically rele-
vant changes in variance that could be detected using
nCPA. Thus, we highly recommend the analysis of in-
dividual metrics in addition to an aggregated multim-
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etric index to better characterize the range of levels of
a candidate stressor that pose a risk to different facets of
biological condition.

A final consideration when using nCPA is that it is a
just a statistical tool, and any tool can be used inappro-
priately. We used nCPA for quantifying the cumulative
probability that a particular level of TP resulted in a
biologically significant change in macroinvertebrate
structure and function, as expressed by the selected
metrics (measurement endpoints). However, as with
any statistical technique, nCPA may detect a statistical
change in the data that may not represent a biologically
significant change—clearly, the definition of biological
significance is a subjective one and will vary among
scientists and decision-makers. However, our results
indicated that means and variances of assemblage at-
tributes to the left and right of the �50% cumulative
probabilities of changepoints differed markedly, some-
times by a factor � 10. We contend that these change-
points represented TP levels that resulted in a qualita-
tively different biological community, as expressed by
various attributes of assemblage structure and function,
and were indicative of biologically significant changes.

Conclusions and Recommendations

Bioassessment and ecological risk assessment are in-
herently complementary in nature (Pittinger and oth-
ers 2000). We presented a generalized approach for
integrating these two assessment systems for the pur-
pose of supporting numerical water-quality criteria.
The strengths of the approach are the establishment of
cause-effect linkages and the estimation of numerical
thresholds. Moreover, the results are easy to interpret
and communicate to environmental decision-makers
and the public (Schiller and others 2001).

In this study, the weight-of-evidence produced from
these analyses implied that a TP criterion � 12–15
�g/L is likely to cause degradation of macroinverte-
brate structure and function, a reflection of biological
integrity, in at least this area of the south Florida coastal
plain nutrient ecoregion. Our results also indicated
that there is a very low (typically �5%) probability that
an IBI threshold response would occur at � 10 �g/L
TP, while there is �95% certainty that a threshold
would occur at � 17 �g/L TP. However, this study only
considers the macroinvertebrate component of biolog-
ical integrity. The purpose of this study is not to imply
that macroinvertebrate attributes should be the only
endpoints used to assign a water-quality criterion to a
region and water body. On the contrary, we highly
recommend the evaluation of the responses of multiple
biological endpoints from a variety of indicator groups

across multiple trophic levels to better identify criteria
protective of biological integrity. It is also important to
recognize that the establishment of numerical criteria
is ultimately a societal decision that will be based on a
host of factors. However, these results do provide some
compelling evidence that bioassessment can be used in
a risk-assessment framework to identify critical levels of
pollution, and ultimately guide environmental deci-
sion-making. Although the approach seems promising,
it remains to be seen how well it will perform in differ-
ent geographic regions and water bodies of the USA
and other parts of the world.

Acknowledgments
We thank S. Qian for writing the S-Plus function for

the nCPA method, J. Johnson, K. Nicholas, and L.
Karppi for collecting water samples, and W. Willis, J.
Rice, and P. Heine for conducting TP analyses. The
critical reviews of N. Detenbeck, J. Karr, D. Lemly, S.
Mozley, D. Urban, and three anonymous reviewers im-
proved the manuscript. Primary funding was provided
by a grant from the EAA Environmental Protection
District to the Duke University Wetland Center. RSK
was partially supported by a grant from the United
States Environmental Protection Agency’s Science to
Achieve Results (STAR) Estuarine and Great Lakes
(EaGLe) program through funding to the Atlantic
Slope Consortium, USEPA Agreement #R-82868401.
Although the research described in this article has been
funded in part by the United States Environmental
Protection Agency, it has not been subjected to the
agency’s required peer and policy review and therefore
does not necessarily reflect the views of the agency and
no official endorsement should be inferred.

Literature Cited

Adams, S. M., and M. S. Greeley. 2000. Ecotoxicological indi-
cators of water quality: using multi-response indicators to
assess the health of aquatic ecosystems. Water Air and Soil
Pollution 123:103–115.

Angermeier, P. L., and J. R. Karr. 1994. Biological integrity
versus biological diversity as policy directives—protecting
biotic resources. Bioscience 44:690–697.

APHA (American Public Health Association). 1992. Standard
methods for the evaluation of water and wastewater, 18
thedition. American Public Health Association, Washington,
DC.

Barbour, M. T., J. B. Stribling, and J. R. Karr. 1995. Multim-
etric approach for establishing biocriteria and measuring
biological condition. Pages 63–77 in W. S. Davis, and T. P.
Simon (eds.)., Biological assessment and criteria: Tools for
water resource planning and decision-making. CRC Press,
Boca Raton, Florida.

Bioassessment and Water-Quality Criteria 807



Barbour, M. T., J. Gerritsen, G. E. Griffith, R. Frydenborg, E.
McCarron, J. S. White, and M. L. Bastian. 1996. A frame-
work for biological criteria for Florida streams using
benthic macroinvertebrates. Journal of the North American
Benthological Society 15:185–211.

Barbour M. T., J. Gerritsen., B. D. Snyder, and J. B. Stribling.
1999. Rapid bioassessment protocols for use in streams and
wadeable rivers: periphyton, benthic macroinvertebrates,
and fish. EPA 841-0B-99-002. U. S. Environmental Protec-
tion Agency, Office of Water. Washington, DC.

Barbour, M. T., W. F. Swietlik, S. K. Jackson, D. L. Courte-
manch, S. P. Davies, and C. O. Yoder. 2000. Measuring the
attainment of biological integrity in the USA: A critical
element of ecological integrity. Hydrobiologia 422:653–464.

Beyers, D. W. 1998. Causal inference in environmental impact
studies. Journal of the North American Benthological Society
17:367–373.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone.
1984. Classification and regression trees. Wadsworth and
Brooks/Cole, Monterey, CA.

Cairns, J., and J. R. Pratt. 1993. A history of biological moni-
toring using benthic macroinvertebrates. Pages 10–27 in
D. M. Rosenberg, and V. H. Resh (eds.)., Freshwater bio-
monitoring and benthic macroinvertebrates. Chapman and
Hall, New York.

Clements, W. H., D. M. Carlisle, L. A. Courtney, and E. A.
Harrahy. 2002. Integrating observational and experimental
approaches to demonstrate causation in stream biomoni-
toring studies. Environmental Toxicology and Chemistry
21:1138–1146.

Cormier, S. M., G. W. Norton, G. W. Suter, D. Altfater, and B.
Counts. 2002. Determining the causes of impairments in
the Little Scioto River, Ohio, USA: Part 2. Characterization
of stress. Environmental Toxicology and Chemistry
21:1125–1137.

Daehler, C. C., and D. R. Strong. 1996. Can you bottle nature?
The roles of microcosms in ecological research. Ecology
77:663–664.

Davis, S. M., and J. C. Ogden. 1994. Everglades: The ecosystem
and its restoration. St. Lucie Press, Boca Raton, FL.

DeBusk, W. F., K. R. Reddy, M. S. Koch, and Y. Wang. 1994.
Spatial distribution of soil nutrients in a northern Ever-
glades marsh: Water Conservation Area 2A. Soil Science Soci-
ety of America Journal 58:543–552.

Dodds, W. K., and E. B. Welch. 2000. Establishing nutrient
criteria in streams. Journal of the North American Benthological
Society 19:186–196.

Efron, B., and R. J. Tibshirani. 1993. An introduction to the
bootstrap. Chapman and Hall, London.

Faith, D. P., P. R. Minchin, and L. Belbin. 1987. Composi-
tional dissimilarity as a robust measure of ecological dis-
tance. Vegetation 69:57–68.

FDEP (Florida Department of Environmental Protection)—
1996. Standard operating procedures manual—Benthic
macroinvertebrate sampling and habitat assessment meth-
ods: 1. Freshwater streams and rivers. Florida Department
of Environmental Protection, Tallahassee, FL.

Fore, L. S., J. R. Karr, and R. W. Wisseman. 1996. Assessing

invertebrate responses to human activities: evaluating alter-
native approaches. Journal of the North American Benthological
Society 15:212–231.

Germano, J. D. 1999. Ecology, statistics, and the art of misdi-
agnosis: The need for a paradigm shift. Environmental Re-
views 7:167–190.

Griffith, M. B., P. R. Kaufmann, A. T. Herlihy, and B. R. Hill.
2001. Analysis of macroinvertebrate assemblages in relation
to environmental gradients in Rocky Mountain streams.
Ecological Applications 11:489–505.

Hart, D. D., and C. T. Robinson. 1990. Resource limitation in
a stream community: phosphorus enrichment effects on
periphyton and grazers. Ecology 71:1494–1502.

Hurlbert, S. H. 1984. Pseudoreplication and the design of
ecological field experiments. Ecological Monographs
54:187–211.

Johnson, D. H. 1999. The insignificance of statistical signifi-
cance testing. Journal of Wildlife Management 63:763–772.

Karr, J. R. 1981. Assessment of biotic integrity using fish
communities. Fisheries 6:21–27.

Karr, J. R., and D. R. Dudley. 1981. Ecological perspectives on
water-quality goals. Environmental Management 5:55–68.

Karr, J. R., and E. W. Chu. 1997. Biological monitoring and
assessment: Using multimetric indexes effectively. EPA 235-
R97-001. University of Washington, Seattle.E. W.

King, R. S. 2001. Dimensions of invertebrate assemblage or-
ganization across a phosphorus-limited everglades land-
scape. Ph.D. Dissertation, Duke University, Durham, NC..

King, R. S., and C. J. Richardson. 2002. Evaluating subsam-
pling approaches and macroinvertebrate taxonomic resolu-
tion for wetland bioassessment. Journal of the North American
Benthological Society 21:150–171.

King, R. S., and Richardson C. J. In press. Macroinvertebrate
and fish responses to experimental P additions in Ever-
glades sloughs. InC. J. Richardson (ed). The Everglades
experiments: Lessons for ecosystem restoration. Springer-
Verlag, New York .

Kleinbaum, D. G., L. L. Kupper, and E. E. Muller. 1988.
Applied regression analysis and other multivariable meth-
ods. Duxbury Press, Belmont, CA.

Larsen, D. P., and A. T. Herlihy. 1998. The dilemma of
sampling streams for macroinvertebrate richness. Journal of
the North American Benthological Society 17:359–366.

Legendre, P., and L. Legendre. 1998. Numerical ecology,
second edition. Elsevier, Amsterdam.

Lemly, A. D., and R. S. King. 2000. An insect-bacteria bioindi-
cator for detecting detrimental nutrient enrichment in wet-
lands. Wetlands 20:91–100.

Lemly, A. D., and C. J. Richardson. 1997. Guidelines for risk
assessment in wetlands. Environmental Monitoring and Assess-
ment 47:117–134.

McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith, and
F. H. Sklar. 1996. Periphyton-water quality relationships
along a nutrient gradient in the northern Florida Ever-
glades. Journal of the North American Benthological Society
15:433–449.

McCune, B., J. P. Dey, J. E. Peck, D. Cassell, K. Heiman, S.
Will-Wolf, and P. N. Neitlich. 1997. Repeatability of com-

808 R. S. King and C. J. Richardson



munity data: species richness versus gradient scores in large-
scale lichen studies. Bryologist 100:40–46.

in R. W. Merritt, and K. W. Cummins (eds.). 1996. An intro-
duction to the aquatic insects of North America, third
edition. Kendall/Hall, Dubuque, IA.

Miltner, R. J., and E. T. Rankin. 1998. Primary nutrients and
the biotic integrity of rivers and streams. Freshwater Biology
40:145–158.

Norton, S. B., S. M. Cormier, M. Smith, and R. C. Jones. 2000.
Can biological assessment discriminate among types of
stress? A case study for the eastern cornbelt plains ecore-
gion. Environmental Toxicology and Chemistry 19:1113–1119.

Palmer, M. A., C. C. Hakenkamp, and K. Nelsonbaker. 1997.
Ecological heterogeneity in streams: why variance matters.
Journal of the North American Benthological Society 16:189–202.

Perrin, C. J., and J. S. Richardson. 1997. N and P limitation of
benthos abundance in the Nechako River, British Colum-
bia. Canadian Journal of Fisheries and Aquatic Sciences
54:2574–2583.

Pielou, E. C. 1984. The interpretation of ecological data: A
primer on classification and ordination. John Wiley and
Sons, New York.

Pittinger, C., K. Thornton, S. B. Norton, and M. Barbour.
2000. The converging paths of ecological assessment and
ecological risk assessment. SETAC Globe, May 2000: .

Qian, S. S., R. S. King, and C. J. Richardson. Two statistical
methods for the detection of environmental thresholds.
Ecological Modelling In press.

Richardson, C. J., G. M. Ferrell, and P. Vaithiyanathan. 1999.
Nutrient effects on stand structure, resorption efficiency,
and secondary compounds in Everglades sawgrass. Ecology
80:2182–2192.

Richardson, C. J., P. Vaithiyanathan, R. J. Stevenson, R. S.
King, C. A. Stow, R. G. Qualls, and S. S. Qian. 2000. The
ecological basis for a phosphorus (P) threshold in the
Everglades: Directions for sustaining ecosystem structure
and function. Duke Wetland Center Publication 00-02.
Duke University, Durham, NC.

in D. M. Rosenberg, and V. H. Resh (eds.). 1993. Freshwater
biomonitoring and benthic macroinvertebrates. Chapman
and Hall, New York.

Schiller, A., C. T. Hunsaker, M. A. Kane, A. K. Wolfe, V. H.
Dale, and G. W. Suter., et al2001. Communicating ecolog-
ical indicators to decision makers and the public. Conserva-
tion Ecology 5:1–26.

SFWMD (South Florida Water Management District). 1992.
Surface water improvement plan for the Everglades. Sup-
porting information document. South Florida Water Man-
agement District, West Palm Beach, FL.

SFWMD (South Florida Water Management District). 2000.
2000 Everglades consolidated report. Supporting informa-
tion document. South Florida Water Management District,
West Palm Beach, FL.

Sokal, R. R., and F. J. Rohlf. 1995. Biometry, third edition.
W. H. Freeman and Co., New York.

Suter, G. W. 1993. Ecological risk assessment. Lewis Publish-
ers, Chelsea, MI.

Suter, G. W. 1996. Abuse of hypothesis testing statistics in
ecological risk assessment. Human and Ecological Risk Assess-
ment 2:331–347.

Suter, G. W. 2001. Applicability of indicator monitoring to
ecological risk assessment. Ecological Indicators 1:101–112.

USEPA (United States Environmental Protection Agency).
1997. Field and laboratory methods for macroinvertebrate
and habitat assessment of low gradient, nontidal streams.
Mid-Atlantic Coastal Streams Workgroup, Environmental
Services Division, Region 3, Wheeling, WV.

USEPA (United States Environmental Protection Agency).
1998a. National strategy for the development of regional
nutrient criteria. EPA 822-R-98-002. Office of Water, Wash-
ington, DC.

USEPA (United States Environmental Protection Agency).
1998b. Guidelines for ecological risk assessment. EPA/630/
R-95/002F. Office of Research and Development. Risk As-
sessment Forum, Washington, DC.

USEPA (United States Environmental Protection Agency).
2000a. Ambient water quality recommendations: informa-
tion supporting the development of state and tribal nutri-
ent criteria for wetlands in nutrient ecoregion XIII. EPA
822-B-00-023. Office of Water, Washington, DC.

USEPA (United States Environmental Protection Agency).
2000b. Stressor identification guidance manual. EPA 822-B-
00-025. Office of Research and Development, Washington,
DC.

Vaithiyanathan, P., and C. J. Richardson. 1998. Biogeochemi-
cal characteristics of the Everglades sloughs. Journal of En-
vironmental Quality 27:1439–1450.

Venables, W. N., and B. D. Ripley. 1994. Modern applied
statistics with S-Plus. Springer, New York.

Bioassessment and Water-Quality Criteria 809


