QUALIFYING EXAM IN REAL VARIABLES BAYLOR UNIVERSITY SPRING 2006

Complete four of the following six questions.

- 1. State precisely the following:
 - a) Fatou's Lemma
 - b) The Lebesgue Dominated Convergence Theorem
 - c) The Hahn-Banach Theorem
 - d) The Fubini Theorem
 - e) The Uniform Boundedness Principle
 - f) The Krein-Milman Theorem
 - g) Alaoglu's Theorem
 - h) The Radon-Nikodym Theorem

2. Define the function f on the interval (0, 1) as follows. If $x = x_1 x_2 x_3 \dots$ is the unique nonterminating decimal expansion of $x \in (0, 1)$, define $f(x) = \max_n \{x_n\}$. Prove that f is measurable.

3. Let C be the space of all real continuous functions on [0, 1] with the supremum norm. Let X_n be the subset of C consisting of those f for which there exists a $t \in [0, 1]$ such that $|f(s) - f(t)| \leq n|s - t|$ for all $s \in [0, 1]$. Fix n and prove that each open set in C contains an open set which does not intersect X_n . Show that this implies the existence of a dense G_{δ} in C which consists entirely of nowhere differentiable functions.

4. Does there exist a continuous function f on [0, 1] such that

$$\int_0^1 x^n f(x) \, dx = \begin{cases} 1 & n = 1 \\ 0 & n = 2, 3, 4, \dots \end{cases} ?$$

5. Let $\ell^{\infty}(\mathbb{R})$ denote the space of bounded real sequences $\{x_n\}$, $n = 1, 2, 3, \ldots$. Show there exists a continuous linear functional $L \in \ell^{\infty}(\mathbb{R})^*$ with the following properties:

i) $\inf_n x_n \le L(\{x_n\}) \le \sup_n x_n$ ii) If $\lim_{n\to\infty} x_n = a$ then $L(\{x_n\}) = a$ iii) $L(\{x_n\} = L(\{x_{n+1}\}).$

Hint: consider $V \subset \ell^{\infty}(\mathbb{R})$ generated by the sequences $\{x_{n+1} - x_n\}$. Show $\{1, 1, 1, \ldots\} \notin \overline{V}$ and apply the Hahn-Banach Theorem.

6. Let H be an infinite dimensional Hilbert space. A linear operator $T: H \to H$ is said to be *compact* if and only if the closure of

$$T(B) = \{g \in H : g = Tf \text{ for some } f \in H \text{ with } ||f|| \le 1\}$$

is compact. T is said to be of *finite rank* if and only if its range is finite dimensional.

- a) Is the identity operator on H compact?
- b) Show that if $\{T_n\}$ is a family of compact linear operators with $||T_n T|| \to 0$ as $n \to \infty$ then T is compact. [Hint: diagonalization, $\epsilon/3$.]
- c) Show that if T is compact there exists a sequence T_n of operators of finite rank such that $||T_n T|| \to 0$. [Hint: what is special about Hilbert spaces?]