
Towards More Efficient
Aspect Weaving

Nate Roberts, Presenter
Eunjee Song, Mentor

Outline
1. Successes & Failures of OOP

2. AOP as remedy

3. How to model for AOP: one (slow) approach

4. Making AOM weaving faster

5. Some other ideas to improve upon the AOM
approach

6. Conclusions & Future Work

• Allows for substantial separation of
concerns

• Interfaces can be separated from
implementation

• Often one concern's details can change
without affecting the code belonging to
other concerns

Background: Object-
Oriented Programming

Background: Object-
Oriented Programming

setPrices()
StoreModel

handleEvent()
refreshView()

StoreController

placeOrder()
StoreView

• But there are situations where OOP cannot
neatly separate the concerns!

• Code for logging and other concerns that cut
across the class hierarchy gets scattered
throughout the codebase.

• Modifications to these concerns can be
tedious and error-prone.

Background: Object-
Oriented Programming

• AOP takes OOP and adds cross-cutting
concerns.

• You let the compiler do the scattering for
you, according to rules that you specify.

• Cross-cutting concerns are called aspects.

Background: Aspect-
Oriented Programming

• The code you write for the cross-cutting concern
is called the advice.

• The "scattering" action of the compiler is called
weaving.

• The points at which the advice is woven are called
join points.

• A set of join points is called a point cut.

Background: Aspect-
Oriented Programming

• method call

• method execution

• constructor call

• constructor execution

• static initializer execution

• object pre-initialization

Background: AOP—
What AspectJ Allows

• object initialization

• field reference

• field set

• handler execution

• advice execution

• Software engineers like to be able to
express designs as models.

• Aspects describe design concepts, not
implementation details.

• But AOP defines join points as points in the
execution of the code!

• How do we express aspects in models?

Modeling with Aspects:
Motivations

• So we express aspects as pairs of sequence
diagrams, one to represent the point cut, and
one to represent the advice to be woven:

Modeling with Aspects:
Approach

Object

publicMethod

Logger

logBegin

Point Cut Advice

Object

publicMethod

• But what counts as a match? Where in the
base code do we weave the advice?

AOM: Ambiguity

StoreView StoreController

placeOrder

refreshView

Should placeOrder match? How about refreshView?

Jacques Klein, et al approach this as follows:

1. add constraints on the SDs allowed

2. provide four choices for aspectual SD
interpretation (today: “enclosed part”)

3. provide an algorithm to do the weaving

AOM: Resolving
Ambiguity

Enclosed Part
I1 I2

b

c

I1 I2

a

b

c

d

matches

I1 I2

b

c

I1 I2

a

b

c

d

does not match

1. Search through the base bSD for matches:
sets of event sets of the appropriate length,
with matching action names.

Klein's enclosed part
algorithm

I1 I2

a

b

a

b

1. Search through the base bSD for matches:
sets of event sets of the appropriate length,
with matching action names.

Klein's enclosed part
algorithm

I1 I2

a

b

a

b

1. Search through the base bSD for matches:
sets of event sets of the appropriate length,
with matching action names.

Klein's enclosed part
algorithm

I1 I2

a

b

a

b

2. Because the name match check is done as a
set comparison, we still need to check that
the events are in the right order.

Klein's enclosed part
algorithm

I1 I2

a

b

a

b

3. Then take the minimal (“earliest”) match
from among the matches. This is the first
join point.

Klein's enclosed part
algorithm

I1 I2

a

b

a

b

4. Delete from the bSD all the events prior to
the join point (these will never be matched),
and repeat the algorithm to determine any
further join points.

Klein's enclosed part
algorithm

I1 I2

a

b

a

b

4. Delete from the bSD all the events prior to
the join point (these will never be matched),
and repeat the algorithm to determine any
further join points.

Klein's enclosed part
algorithm

I1 I2

a

b

5. Finally, replace the join points in the original
bSD with the advice.

Klein's enclosed part
algorithm

I1 I2

a

b

a

b

c

c

Measuring Performance of Klein's Algorithm

I1 I2

a

b

I1 I2

a

b

c

I1 I2

a

b

a

b

… n repetitions

Point Cut Advice

Base

(It's worth noting that the test setup, with O(n)
matches, adds a factor of n to the timing; so O(n4) for
the test corresponds to a more general O(n3).)

Measuring Performance of Klein's Algorithm

• Main idea: don't discard the ordering
information

• Result: no measurable speed-up!?

• …Something else is going on…

Can we improve on this?

• Turns out that the main cost came in step 5
from the algorithm: delete the events prior to
the join point.

• For n=4, more than half the time is spent in a
single method: transitiveClosure().

• "Prior to" is not as simple as it might seem,
because the events in a bSD are only partially
ordered.

Culprit: "Transitive Closure"

• A > B > D and A > C > D, but B ?? C.

• Corresponds to potentially parallel execution in SDs.

Partial Ordering

A

B C

D

• Klein's strategy:

• compute transitive closure of all events, finding all
events that are either before or after a matched
event.

• determine which of these are, according to the
partial ordering, prior to matched events, and
delete those from the bSD.

• Time complexity of transitive closure is O(n3),
where n is the number of events in the set.

Culprit: "Transitive Closure"

• Transitive Closure replacement:
getAllPredecessorsOfEvent().

• This just iteratively adds immediate
predecessors of each matched event, until no
new ones are added (remembering which ones
we've already processed).

• amounts to a lazily computed transitive
closure, only going backwards in time, and only
computing the closure of the matched events.

Improving on Klein's
Algorithm

• Assuming matched event set has constant size,
worst case time complexity of
getAllPredecessorsOfEvent(): O(n2).

• Best case is O(n), for events that have only a small
number of predecessors. (Transitive closure
strategy, which constructs the entire transitive
closure regardless of which event is in question.)

• Could improve on this by having events know
about their predecessors, etc., but
getAllPredecessorsOfEvent() is no longer the
bottleneck.

Improving on Klein's
Algorithm

• It might be worth trying the experiment in a somewhat
different context: what if we just make a large base SD,
which only includes a single match (maybe at the end)?

Improving on Klein's
Algorithm

• Some other areas of his approach appear to
be quite inefficient—especially the "left
amalgamated sum," which is what's
responsible for the actual weaving.

• Rethink certain assumptions in the setup.
Do we need partial orderings? (The partial
orderings are a big part of the essential
complexity of Klein's approach.) Could we
do better by restricting further the
sequence diagrams allowed for AOM?

Future improvement
possibilities

• AOM will be necessary to allow efficient use
of aspects in software engineering.

• Good weaving algorithms will be necessary
if AOM is to be practical.

• Klein's approach, while very flexible, also
appears to have some unnecessary
complexity. It would be great if we could
develop a semantically clearer approach,
even if that means giving up a certain
amount of flexibility.

Conclusions

