Stability of Implants in Total Knee Replacement Surgery

Dan Bland Mentor: Dr. Carolyn Skurla

Bone from an Engineer's Perspective

Material Properties

- Anisotropic
- Heterogeneous
- Nonlinear
- Viscoelastic

Function

- Mechanical

 Support
 Lever System
 Protection

 Physiological

 Hematopoiesis
 Mineral
 - Homeostasis

http://encarta.msn.com/encnet/refpages

Structure

Hierarchical

i.e., Composite material

Constituents

Collagen
1/3 of volume
50% of dry weight

Proteins and glycoproteins

Calcium phosphate
Water

Hierarchical Structure

Lowest Level

- Collagen Fibrils
 - Arranged in parallel fashion
 - Give limited flexibility
- Crystals of calcium phosphate (hydroxyapatite)
 - Surround and fill in between collagen
 - Give strength, hardness, and rigidity
- Two Types of Bone
 - Cortical (compact)
 - Cancellous (spongy)

Cortical and Cancellous Bone

 Major physical difference between cortical and cancellous bone

Porosity

Mow 1997

Bone Remodeling

Constantly remodeling itself
Self-repairing
Modifies structure based on load
Dynamic loading more important than static loading

Total Knee Replacement (TKR)

- Cartilage wears out or tears

 Invasive surgery

 The components wear out

 Revision surgery
 - Several years later
 - Cut more bone; lower tibial plateau

fo.aaos.org/booklet/thr_report.cfm?threa

id=9&tonc

Motivation for Study

- Scott & White collaboration with Dr. Christopher Chaput
- Find effect of implant's stem length on motion of the implant
- Find effect of removal of more bone at the tibial plateau on the motion of the implant
- Few studies on revision TKR

Tibial Stress Model

The Implants

- Type of implant
 - Stem
 - Length (40 mm, 80 mm, 155 mm)
 - No stem
- Fixation method
 - Cemented
 - Press fit

http://www.stryker.com/jointreplacements/sites/duracon/index.php

Goals

 Compare stability of different implants based on their performance under compression in the following areas:

- Vertical displacement
- Horizontal displacement
 - Expected no greater than 400 microns (.4 mm)
- Use geometry to determine micromotion of the center of the tibial plate

Use of Synthetic Bones

These bones mimic properties of real bone

Testing Machines

MTS 858 Mini Bionix II
Strain Smart

Synchronization Box

Testing Method

Potting

Medial horizontal

Lateral vertical

Interfacing Implant with LVDTs •New extensions for the implant •Glue to the top of the implant to which we would attach the extensions

Epoxy extensions to the outside

Testing Method

• The Jig

Loading at 3 degree angle

Graphical Results

Maximum Displacements at 5000 N Load

Conclusions

Trends

- Shortest implant (40mm) has greatest motion
- For same length, cemented implant moves less than press fit

High variation in micromotion Sample size too small for statistical significance

In the process of more testing

Acknowledgements

Dr. Carolyn Skurla
Mr. Zachary Kelm
Mr. David Webster
Mr. Scott Morgan
Mr. Eric Schaefer

Questions?