

# User's Manual [Quick Start] FLUOVIEW FV10000 LASER SCANNING BIOLOGICAL MICROSCOPE FV10-ASW [Ver2.0]

Thank you for your purchase of Olympus microscope at this time. Hold this manual by your side when using this microscope all the time and keep it with care after reading.

(Notice

#### Caution

FV1000MPE is a CLASS 4 laser product; FV1000 is a CLASS 3B laser product.

The procedures for using this system are classified as follows:

Service

"Service" means any adjustment or repair performed by highly trained and skilled technical personnels who are provided the service training following to the service manual for this system.

The performance has influence on the feature of this system, and there is a risk which unintended CLASS 3B or CLASS 4 laser light is emitted.

Maintenance

"Maintenance" means adjustment or other procedures performed by customers to maintain that this system functions properly.

Operation

"Operation" means all performance described in the user's manuals in this system.

CLASS 3B or CLASS 4 laser light is only emitted from the objective lens during the actual execution.

The User's Manuals of this system consist of the following:

In order to maintain the full performance of this system and ensure your safety, be sure to read these user's manuals and the operating instructions for the laser unit and light source unit before use.

User's manual constitution of FV1000MPE

- FV1000MPE / FV1000 User's Manual [Laser Safety Guide]
- FV1000MPE User's Manual [Safety Manual] or [Safety Guide]
- FV1000 User's Manual [Safety Guide]
- FV1000MPE User's Manual [Operation Manual] or [Operation]
- FV1000 User's Manual [Hardware Manual]
- FV1000 FV10-ASW User's Manual [Quick Start]

User's manual constitution of FV1000

- FV1000MPE / FV1000 User's Manual [Laser Safety Guide]
- FV1000 User's Manual [Safety Guide]
- FV1000 User's Manual [Hardware Manual]
- FV1000 FV10-ASW User's Manual [Quick Start]

Also, we have prepared one service manual for this system as below. Technical personnels who perform the service require to take the service training.

• FV1000MPE / FV1000 Service Manual

In case of purchasing the laser simultaneously, we have prepared the following manual for the laser.

• MaiTai Series User's Manual [Quick Start]

In addition, we have prepared one service manual for the laser as below. Technical personnels who perform the laser service require to take the service training.

• MaiTai Series Service Manual

Part or whole of this software as well as manual shall not be used or duplicated without consent.

#### **Registred trademark**

Microsoft, Microsoft Windows are registered trademarks of Microsoft Corporation.

Other brand names and product names are trademarks or registered trademarks of their respective owners.

This Quick Start has divided into the volume by the following system configurations.

| IX81 ( | (S | pectral | T۱ | /pe | ) |
|--------|----|---------|----|-----|---|
|        |    |         |    |     |   |

#### IX81 (Filter Type)

#### BX61 (Spectral Type)

BX61 (Filter Type)



# Laser Conforcal Scanning Microscope FV1000D Spectral Type (invertedMicroscpeIX81)

# **Operation Manual**



# <u>Contents</u>

| System introduction 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| FV1000D Laser DyeList                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                                  |
| System Preparation {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                  |
| Visible Observation<br>Observation of Fluorescence image 6<br>Observation of Differential Interference Contrast Images 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                    |
| Image Acquisition       Overview of Operation Panel for Image Acquisition       8         Single Stain on XY Image       9         Complement of adjusting the image       9         Double Stain on XY Image       1         Double Stain on XY Image       1         Sequential scan Line Sequential       10         Double Stain on XYZ image       1         Four Stain on XY Image       1         Single Stain + DIC on XY Image       2         Merge the image between fluorescent XY image and DIC image       2         Single Stain on XYZT Image       2         Spectral Image on XYZ Image       2         Unmixing       3         Reload the image conditions       3 | 9-11<br>2-13<br>4-15<br>6<br>7-18<br>9-21<br>22-23<br>24<br>25-26<br>7-29<br>30-33 |
| Overview of the 2D Operation Panel / Opening a file       3         Making 2D Z projection file Images       3         Saving a Z section image as 2D image       3         Inserting the Scale Bar       3         Rotating a Three-dimensional Image       3         Saving Rotating a Three-dimensional Image       4         Saving Rotating a Three-dimensional animation file       4 <b>2D Image Analysis</b> 4         Edit the image color and contrast       4         The image of Z section       4         Intensity Profile of each Z sections       4         Measure       4         Line Intensity Profile on the 2D image / Histogram       4                        | 39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                 |
| Closing the System 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <sup>48</sup> 2                                                                    |

## **Spectral Type Main Scanner**



#### Dye List (FV1000D Lasers are available below)

#### LD405nm LD440nm LD473nm LD559nm LD635nm Ar458nm Ar488nm Ar515nm HeNe(G)543nm



# System Preparation



| Welcome to "FV10-ASW" OLYMI | PUS         |
|-----------------------------|-------------|
| FV10-A                      | sw          |
| User ID: Administrato       | or <b>5</b> |
| Password                    | OK Cancel   |

Wait for a moment until the software is started

- Turn the computer ON.
   [In case of equipped concentrated power supply, power on it first]
- 2. Turn the laser ON (Turning the key switch)
  2-1. LD559nm ON
  2-2. Multi Ar 458nm 488nm 515nm
  2-2. HeNe(G)(643nm) ON
- 3. Turn the mercury burner ON for Fluorescence observation.
- 4. Log on Windows
- Enter Password, Customer name is below User name: <u>Administrator</u> Password : <u>fluoview</u>
- 5. Double click this icon FVI0-ASW to log on to ASW User name: <u>Administrator</u> Password : <u>Administrator</u>

#### Visual Observation under the Microscope

#### Observation of Fluorescence Image



Hand switch



- 1. Select an objective lens by using the hand switch
- 2. Select florescent filter cube

MEMO Fluorescence filter

NIBA: Blue Excitation / Green Fluorescence (Ex.:FITC,EGFP) WIG: Green Excitation / Red Fluorescence (Ex.:Rhodamine, DsRed)

3.

Click the button on the Fluoview software



4. Focus to the specimen

#### Visual Observation under the Microscope

#### Observation of Differential Interference Contrast Images





Focus x2 0 Depth Time Focus x4 XY Repeat CH1 G1 - CH2 G2 - CH3 G3 -TD1 G1 100 Nor C.A Lamp ain Offset HV Gain Offset HV Gai HV Gain Offse 3 1030 î Laser Auto 5.0% 10.0% 5.0% 543 488 5.0% ilter Mode Kalman C Line C Frame 2 🗧 📀 Analog Int C Photon Cnt Sec

- 1. Select the Objective Lens
- 2. Insert the Polarizing Plate in the Light Pass
- 3. Insert the DIC prism slider in the light pass
- 4. Click the button on Fluoview software

5. Focus to the specimen

#### **Overview of Operation Panel for Image Acquisition**



### Image Acquisition (Single Stain on XY Image)

Acquisition of a single image (XY plane) (fluorescence image only)
Sample: Single stain of green fluorescence dye (FITC)



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click on the Apply button.

(The DyeList panel can be closed by using the Close button.)

### Image Acquisition (Single Stain on XY Image)







4. Press XY Repeat button click to get image



: Continuous scan mode

- 5. Focus to the specimen
- 6. Adjust the green (FITC) image.



- Adjust sensitivity of <u>HV</u> and reduce noise by <u>offset</u>
- 7. Press keyboard Ctrl + H key

Optimized PMT adjustment brightness intensity 2 color between white and black,

Maximum intensity is 4095(12bit) if intensity is over 4095, color is changed to red (saturation)

\* Basically, Gain value is 1

### Image Acquisition (Single Stain on XY Image)



#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

8. Select AutoHV and then select ScanSpeed.
\*As the scan speed becomes slower, noise can be removed while maintaining the

can be removed while maintaining the current brightness.

- 9. Press the Stop button to stop scanning.
- 10. Click on XY, and
  "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 11. Saving the image:

Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image.

(Save as Type " oib" or "oif" file format specifically for the FV10-ASW software.)

Save the image as TIFF,BMP,JPEG format Select "Export" and chose the format TIFF, BMP, JPEG.

### **Complement of adjusting the image**

| AcquisitionSetting                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------|
| Mode                                                                                                                                 |
| Size<br>Aspect Ratio • 1:1 • 4:3 • arbitrary<br>X 	 512 by 512                                                                       |
| Area<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                         |
| 120.69um         ✓         StepSize         0.50         um         Op.           Set 0         ✓         Slices         7         ✓ |
| Focus Handle On Escape                                                                                                               |
| X:0.00um/pix Y:0.00um/pix Z:0.00um/slice                                                                                             |
| Interval 0 sec Num 10                                                                                                                |

1. Click "Clip scan" button , and enclose an interesting region's image on the whole image.



- 2. pixel setting \* The standard pixel is 512 x 512
- 3. Zoom Setting
- Press "XY Repeat" to scan and set zoom value.



Above image is zoomed From 1 to 2 \* Scan speed and pixel resolution remain even zoom value is changed

4. Click Zoom scan, and be able to enclose an interesting region's on the whole image

Press XYRepeat to scan after enclose the region



\* Scan speed and pixel resolution remain even zoom value is changed

### Complement of adjusting the image



averaging of images.

### **Image Acquisition** (Double Stain on XY Image)

■ Acquisition of a single image (XY plane) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (Alexa 488) and red fluorescence dye (Alexa 546)



#### Simultaneous scan

- 1. Click on the FV10-ASW software to close the fluorescence button lamp shutter. Alternatively, click on the 👗 button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click "Apply" button.

(The DyeList panel can be closed by using the Close button.)

Display after DyeApply is carried out 14

650 V Laser 633

1 0 × %

10.0%

Laser

C Line C Frame

0

Laser

☐ Sequentia

HV Gain Offset HV Gain Offset

253

Lamp

108um

() Auto

### Image Acquisition (Double Stain on XY Image)





- 4. Press the XY Repeat button to start scanning.
- 5. Adjust the green (Alexa Fluor 488) image and the red (Alexa Fluor 546) image.

(The image adjustment is outlined below. For more information, refer to Appendix 1.)

 Press the Stop button to stop scanning and press XY repeat to acquire the image. (Refer to ■Memo■.)



7. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image.

(Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

### Image Acquisition (Double Stain on XY Image)

■■ Acquisition of a single image (XY plane) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (Alexa 488) and red fluorescence dye (Alexa 546)

Sequential scan (Line Sequential is introduced here.)





- 1. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
- 2. Check Sequential and select Line.
- 3. Adjust the green (Alexa Fluor 488) image and the red (Alexa Fluor 546) image.
- 4. Press the XY button to acquire an image.
- Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.) The image is acquired.

#### ■Memo■

File formats specifically for the FV10-ASW

<u>OIF format</u>: Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### Image Acquisition (Double Stain on XYZ Image)

■ Acquisition of 3D images (XYZ) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (FITC) and red fluorescence dye (Rhodamine)

This is the procedure to acquire images through Line Sequential scanning.



1. Take steps 1 to 7 described on pages

13 and 14.

- 2. Press the XY Repeat button to start scanning.
- Click on the △ and △ buttons to shift the focal point. (Refer to ■Memo■.)
- 4. When the sample upper limit is displayed on the image, accept it using the Set button.
- 5. Click on the and buttons to shift the focal point. (Refer to ■Memo■.)
- 6. When the sample lower limit is displayed on the image, accept it using the Set button.
- 7. Press the Stop button to stop scanning.
- 8. Enter StepSize, Slice (the recommended value can be referred to by using the Op button), and check the check box

### Image Acquisition (Double Stain on XYZ Image)









- 9. Select AutoHV and then select ScanSpeed.
- 10. Select Depth.
- 11. Press the XYZ button to acquire an image.
- Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 13. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type " oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### **Image Acquisition** (Four Stain on XY Image)

Acquisition of 4 stain images (XY) (fluorescence image only) ■■

Sample: Four stain of Blue fluorescence dye (DAPI), green fluorescence dye

(Alexa488) and red fluorescence dye (Rhodamine), far-red fluorescence dye (Cy5)

This is the procedure to acquire images through Virtual Channel scan



### Image Acquisition (Four Stain on XY Image)



### Image Acquisition (Four Stain on XY Image)





\* Be able to start at each Phase.



8. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type " oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### Image Acquisition (Single Stain + DIC on XY Image)

■ Acquisition of a single image (XY plane) (fluorescence image and differential interference contrast image) ■■

Sample: Green fluorescence dye (FITC) and differential interference contrast image



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click on the Apply button.

(The DyeList panel can be closed by using the Close button.)

4. Check TD1.

### Image Acquisition (Single Stain + DIC on XY Image)





- 5. Press the "**XY Repeat**" button to start scanning.
- 6. Adjust the green (FITC) image and the differential interference contrast image.
- 7. Press the "**Stop button**" to stop scanning.
- 8. Press the "**XY button**" to acquire an image.
- Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 10. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type " oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### Merge the images between fluorescent XY image and DIC image

Edit different each files to the same file. This is available for making merge image Between fluorescent image and focused DIC image.



### Image Acquisition (Single Stain on XYZT Image)

This is available for the Time series scan experiment.







- 1. Adjust the image. \* Refer P17,18
- Enter interval time to "Interval"
   Enter interval number to "Num"
   Example: Acquiring time series scan images every 5minutes for 1hour is below,
- Select "Time" and then click XYTbutton to acquire Time series scan image.

 Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.

### Image Acquisition (Single Stain on XYZT Image)





- 1. Adjust the image. \* Refer P17,18
- 2. Insert ZDC unit to left side.
- 3. Check **"EnableZDC AF during Time Series Scan'** and click **"ZDC setting"**.
- 4. Click "**Set Offset**" to register auto focus position.
  - \* Note: Have to use glass bottom dish below, otherwise ZDC doesn't work.



- 5. Set "Interval" and "Num" and then click "XYZT" to acquire the time series image.
  - \* Note: In case of using ZDC for Time series Scan, follow below limits Interval number is more than 60 sec, Rest Time is more than 30 sec, otherwise ZDC doesn't work.
  - \* If use "TimeControler", Time Series Scan is able to done even interval number is within 60sec and Rest Time is within 30sec. 26

### Image Acquisition (Spectral Image on XYL Image)

■■ Acquisition of a spectral image (XYL) ■■

Sample: Double stain of green fluorescence dye (Alexa Fluor 488) and green fluorescence dye (YOYO-1)



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the *button* to view the optical path diagram.
- 3





### Image Acquisition (Spectral Image on XYL Image)







- 4. Click on the Spectral Setting window appears.
- 5. Set the slit width for CHS1 to 20 nm, for example.
- 6. Press the XY Repeat button to start scanning.
- 7. While observing the image, Click the left side of slit and drag to the point which the highest brightness is achieved.
  - Note: Move the slit position only while keeping the slit width at 20 nm.
- 8. Adjust the image on the highest brightness.
- 9. Press the Stop button to stop scanning.

### Image Acquisition (Spectral Image on XYL Image)

| LambdaScan     | 0             |
|----------------|---------------|
| Start 450 nm   | End 650 nm    |
| StepSize 10 nm | Num 19 👝      |
| Band           | Width 20 nm 🐓 |



| 🔲 Image | Acquisitio | on Control |        |       |      |
|---------|------------|------------|--------|-------|------|
|         | Focus x2   |            |        |       |      |
|         | Focus x4   | XY Repeat  | XY     | Zt    | Stop |
|         |            |            | Lambda | Depth | Time |
|         |            | 1          | 2      |       |      |

|          |           |    | _ | 6    |               |
|----------|-----------|----|---|------|---------------|
| Focus x2 |           |    |   |      |               |
| Focus x4 | XY Repeat | XY |   | Done | Depth<br>Time |

- 10. Set the range of wavelength to be acquired, the slit width and the step.
  - Start = Start wavelength
  - •End = End wavelength
  - Resolution = Slit width
  - StepSize = Step
- 11. Select AutoHV and then select ScanSpeed.

\*As the scan speed becomes slower, noise can be removed while maintaining the current brightness.

#### 12. Select Lambda.

- 13. Press the XYZ button to acquire an image.
- 14. Click on SeriesDone, and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.

### <u>Image Analysis (Unmixing)</u>

#### I. When each fluorescence dye point is clear

From an XYL image where fluorescence dyes with similar fluorescence spectrums are present together, derive the fluorescence spectrum for each fluorescence dye and obtain an unmixed image based on the fluorescence spectrums.

Sample: Double stain of green fluorescence dye (Alexa Fluor 488) and green fluorescence dye (YOYO-1)







Unmixed image

- 1. Open an XYL image file with both Alexa Fluor 488 and YOYO1 applied.
- Enclose a point dyed with Alexa Fluor 488 only and a point dyed with YOYO1 only.
- 3. From Processing on the menu bar, select Spectral Deconvolution.
- 4. Double-click on ROI1 and ROI2.
- 5. Check that the Processing Type is set to "Normal" and click on Execute.
- 6. An unmixed image is obtained.


# Image Analysis (Unmixing) I. When each fluorescence dye point is clear

Sample: single stain of green fluorescence dye (GFP) and auto fluorescence from cell







Unmixing image between GFP and Auto fluorescence

- 1. Open the XYL image (GFP + auto fluorescence).
- 2. Enclose a point dyed with GFP only and a point dyed with auto fluorescence only.
- 3. From Processing on the menu bar, select Spectral Deconvolution.
- 4. Double-click on ROI1(GFP) and ROI2(Auto fluorescence).
- 5. Check that the Processing Type is set to "Normal" and click on Execute .
- 6. An unmixing image is obtained.

Green color is GFP. Gray color is Auto fluorescence.

## Image Analysis (Unmixing)

## II. When a control sample is used

From an XYL image with a single type of fluorescence dye, derive the fluorescence spectrum of the dye and obtain an unmixed image based on the fluorescence spectrum.

Sample: Double stain of green fluorescence dye (Alexa Fluor 488) and green fluorescence dye (YOYO-1)



- 8. Open an XYL image file with both Alexa Fluor 488 and YOYO1 applied.
- 9. From Processing on the menu bar, select Spectral Deconvolution.

- 10. Double-click on Alexa Fluor 488 and YOYO1 (which have been registered) in the database of fluorescence spectrums.
- 11. Check that the Processing Type is set to "Normal" and click on Execute.
- 12. An unmixed image is obtained.

## Image Analysis (Unmixing)

### III. When only the number of types of fluorescence dyes is known (Blind Unmixing)

From an XYL image where fluorescence dyes with similar fluorescence spectrums are present together, obtain an unmixed image based on only the number of types of fluorescence dyes.

Sample: Sample with two unknown types of fluorescence dyes





Unmixed image

1. Open an XYL image file for a sample that has two unknown types of fluorescence dyes.

- 2. From Processing on the menu bar, select Spectral Deconvolution.
- Click on two Calculate check boxes. (Click on three boxes when three types of fluorescence dyes are used.)
- 4. Check that Processing Type is set to "Blind" and click on Execute.

5. An unmixed image is obtained.

## Reload the image conditions







1. Open the file and click



2. Click 💕

3. The conditions (HV,Offset, CA and so on ) are reloaded .



## Image Analysis (Opening a File)



1. Double-click on a file to be opened from Explorer.

## Image Analysis (Acquire a Projection Images)



1. Click on the 🚮 button to



2. To save this image, right-click on the image, select Save Display and save the image with a new name.

## Image Analysis (Save a Z section Image as 2D file)



Save the image in step 3 or 5

- 6. Click on the 🛅 button.
- 7. A 2D View-(file name) image is created.

 Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as type "xml" is a file format specifically for the FV10-ASW software.)

### ■Memo■

File formats specifically for the FV10-ASW

### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

## Image Analysis (Inserting the Scale Bar)



- 1. Click on the button.
- 2. While left-clicking the image, drag and drop it at a certain point.

Change the size

3. While clicking the right or left handle, move the mouse from side to side.



Change the text size, color, style, etc.

4. Select Scale Bar and then right-click on Scale Bar to select Format Setting.

5. Change the setting in this window as required.

## Image Analysis (Rotating a Three-dimensional Image)



## Image Analysis (Saving an Image)



## Image Analysis (Rotating a Three-dimensional animation)



To save a rotation file as an animated image, create threedimensional images according to the following procedure.

For example, try to rotate an image by 180 degrees.



- 5. Click on the More button.
- 6. Click on the Angle rotation tab.
- 7. Select the rotation axis.
- 8. Enter the rotation angle.



- 9. Select AVI File and click on Create.
- 10. Enter a file name and click on Save.

## 2D Image Analysis (Edit the image color and contrast)



2.Edit contrast to drag 🛆 to left or right side, and another way to edit contrast is entering value on

3. Min and Max value are changed and contrast of image is edited. \* According to get Min value up , be able to reduce noise of the image. "Max" and "Min"(Max4095, Min0)



Red

## 2D Image Analysis (the image of Z section)



1. Click and select again, then Projection image is shown on 2D View after getting XYZ image.

2. Click 🔳 and select 📃.

- The images of Z section is shown on X axis and Y axis.
   According to Move to left or right side on X axis and to move to ups and down on Y axis, be able to show image of Z section each position.
- 4. The image of Z section on Y axis.
- 5. The image of Z section on X axis.

## 2D Image Analysis (Intensity Profile of each Z sections )



## 2D Image Analysis (Measure)



1. Enclose interesting regions by ROI

Line on interesting positions by ROI

2. Click of "measure".

|                   | 150.780 Integ<br>79.732 Aver<br>6120.813 Max | rage    | 378548,000<br>1244,509<br>4095,000 | CHS2<br>54771708.000<br>559.277<br>3227.000 |                     | ••       |          |        |          | on of<br>urer   | ••••              |               | IS Ca   | licula   | ated   | on       |         | Current<br>Zpos :10<br>Tpos :0<br>Lpos :0 |
|-------------------|----------------------------------------------|---------|------------------------------------|---------------------------------------------|---------------------|----------|----------|--------|----------|-----------------|-------------------|---------------|---------|----------|--------|----------|---------|-------------------------------------------|
|                   |                                              | ated    | 3999.000                           | Regi                                        |                     | 15       |          |        |          |                 |                   |               |         |          |        |          | -       | Add                                       |
| The second second |                                              | urem    |                                    | 1316,002                                    |                     |          |          |        |          |                 |                   |               |         |          |        |          |         |                                           |
| ROL               | CenterX                                      | CenterY | Area                               | Perimeter                                   | Integration         | Average  | Max      | Min    | Range    | StdDev          | 3StdDev           | Integration   | Average | Max      | Min    | Range    | StdDev  | 3StdDev                                   |
|                   | [um]                                         | [um]    | [um*2]                             | [um]                                        | CHS1                | CHS1     | CHS1     | CHS1   | CHS1     | CHS1            | CHS1              | CHS2          | CHS2    | CHS2     | CHS2   | CHS2     | CHS2    | CHS2                                      |
| 1                 | 57.171                                       | 49.438  | 3129.625                           | 241.490                                     | 5478264.000         | 1107.926 | 4095.000 | 95.000 | 4000.000 | 710.261         | 2130.783          | 2952481.000   | 658.076 | 3590.000 | 28.000 | 3562.000 | 522.518 | 1567.55                                   |
| 2                 | 112.522                                      | 53.402  | 1470.188                           | 194.764                                     | 0620457.000         | 1301.724 | 4095.000 | 97.000 | 3998.000 | 883.602         | 2650.807          | 7837013.000   | 758.280 | 3468.000 | 28.000 | 3440.000 | 561.877 | 1685.63                                   |
| 5                 | 51.900                                       | 87.103  | 3274.688                           | 100 Parts                                   | 2573667.000         | 1003.410 | 4095.000 | 94.000 | 4001.000 | 700.397         | 2101.192          | 9839166.000   | 569.504 | 3415.000 | 53.000 | 3362.000 | 443.623 | 1330.86                                   |
| 4                 | 80.180                                       | 111.524 | 1732.438                           |                                             | 4386227.000         | 879.766  | 3836.000 | 83.000 | 3753.000 | 657.656         |                   | 7880740.000   | 645.072 | 3380.000 | 25.000 | 3355.000 | 523.061 | 1569.18                                   |
| 0                 | 150.780                                      | 79.732  | 6120.813                           |                                             | 1878548.000<br>ho i | 1244.509 | 4095.000 | 96.000 | 3999.000 | 725.103<br>f al |                   | 4771708.000   | 559.277 | 3227.000 | 41.000 | 3186.000 | 439.334 | 1318.00                                   |
|                   |                                              |         |                                    | /.                                          |                     | mo       |          |        |          |                 |                   | 013           |         |          | _      | _        | _       | _                                         |
| int               | 5                                            | 5       | ,                                  | 5 (                                         | 5 5                 | 5        | 5        | 5      | 5        | 5               |                   | 5 5           | 5       | 5        | 5      | 5        | 5       |                                           |
| rage              | 90.511                                       | 76.240  | 3145.55                            | 0 246.79                                    | 5 6987432.600       | 1107.467 | 4043.200 | 93.000 | 3950.200 | 735.404         | 2206.21           | 2 0656221.600 | 638.042 | 3416.000 | 35.000 | 3381.000 | 498.083 | 1494.                                     |
| (                 | 150.780                                      | 111.524 | 6120.81                            | 3 313.258                                   | 8 1878548.000       | 1301.724 | 4095.000 | 97.000 | 4001.000 | 883.602         | 2650.80           | 7 4771708.000 | 758.280 | 3590.000 | 53.000 | 3562.000 | 561.877 | 1685.                                     |
|                   | 51,900                                       | 49,438  | 1470.18                            |                                             | 4 4386227.000       | 879.766  | 3836.000 | 83.000 | 3753.000 | 657.656         | 1.1.1.1.1.1.1.1.1 | 7 7837013.000 | 559.277 | 3227.000 | 25.000 | 3186.000 |         | 1318.                                     |
| ge                | 98.879                                       | 62.087  | 4650.62                            |                                             | 5 7492321.000       | 421.958  | 259.000  | 14.000 | 248.000  | 225.947         |                   | 0 6934695.000 | 199.002 | 363.000  | 28.000 | 376.000  |         |                                           |
| Dev<br>dDev       | 41.309                                       | 25.569  | 1848.844                           |                                             | 5 8699715.061       | 172.621  | 115.828  | 5.701  | 110.244  | 86.561          |                   | 3 5124831.492 | 80.326  | 132.286  | 11.811 | 137.208  |         |                                           |
|                   | 123.928                                      | 76.707  | 5546.52                            | 143.20                                      | 5 6099145.184       | 517.864  | 347.485  | 17.103 | 330.731  | 259.683         | 119.05            | 0 5374494.476 | 240.979 | 396.857  | 35.433 | 411.624  | 162.305 | 486.                                      |

## 2D Image Analysis (Line Intensity Profile on the 2D image)



Line on the 2D image by ROI
 Click (Intensity Profile) "Intensity Profile"
 "Intensity Profile" on the line is shown as intensity graph .

## 2D Image Analysis (Histogram)



- 1. Enclose interesting regions by ROI.
- 2. Click III "Histogram"
- 3. "Histogram" window is shown as a graph, frequency of intensity of each pixels is plotted on the area enclosed by ROI.

## 2D Image Analysis (Line Series Analysis)



- 1. Line on the 2D image.
- 2. Click util "Line Series Analysis"
- 3. Intensity of Z position/ time on the line is shown as a graph .

## 2D Image Analysis (Co-localization)





- 1. Enclose an interesting regions by ROI.
- 2. Click 🛄
- 3. Select Threshold Threshold from Annotation Mode.
- According to move Thresholds of X,Y axis to right and left ,ups and down (Enclose red color X,Y axis), Colocalization result between 2ch is changed .

Information of Co-localization is listed under the scatter plot.

## 2D image Analysis (Series Analysis TimeLapse)



- 1. Enclose interesting regions by ROI
- 2. Click 🔤 "
  - "Series Analysis"

3. "Series Analysis" graph is shown below, Y axis shows intensity, X axis shows time and then be able to see time series reaction each ROIs.



## **Closing the System**





- 1. Exit the FV10-ASW software by selecting File/Exit.
- 2. Exit the Windows.
- (1) Select Start/Shut Down.
- (2) On the Shut Down Window, select Shut Down and click on OK.
- Turn the laser OFF. (Turn the key switch to the OFF position.)
- 3-1. LD559nm OFF
- 3-2. Multi Ar (458 nm, 488 nm, 514 nm) OFF
- 3-3. HeNe (G) (543 nm) OFF
- 4. Turn the mercury burner power OFF.



# Laser Conforcal Scanning Microscope FV1000D Filter Type (invertedMicroscpeIX81)

# **Operation Manual**



## <u>Contents</u>

| System intro | oduction                                                                                                                                  |                                                                                                     | 3                                                             |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| FV1000D Las  | ser DyeList                                                                                                                               |                                                                                                     | 4                                                             |
| System Prep  | paration                                                                                                                                  |                                                                                                     | 5                                                             |
| Visible Obse | Observation                                                                                                                               | of Fluorescence image<br>of Differential Interference Contrast Images                               |                                                               |
| Image Acqu   | Overview of<br>Single Stain<br>Complement<br>Double Stain<br>Sequential s<br>Double Stain<br>Four Stain o<br>Single Stain<br>Merge the in | Operation Panel for Image Acquisition                                                               | 9-11<br>12-13<br>14-15<br>16<br>17-18<br>19-21<br>22-23<br>24 |
|              | Reload the ir                                                                                                                             | mage conditions                                                                                     | 27                                                            |
| Image Analy  | Overview of<br>Making 2D Z<br>Saving a Z s<br>Inserting the<br>Rotating a T<br>Saving an Im                                               | the 2D Operation Panel / Opening a file<br>2 projection file Images                                 | 32<br>33                                                      |
| T            | Edit the imag<br>The image of<br>Intensity Prof<br>Measure<br>Line Intensity<br>Line Series A<br>FimeLapse Ar                             | e color and contrast<br>Z section<br>file of each Z sections<br>Profile on the 2D image / Histogram | 36<br>37<br>38<br>39<br>40<br>41                              |
| Closing the  | System                                                                                                                                    |                                                                                                     | 41 2                                                          |

## Filter Type Main Scanner



## Dye List (FV1000D Lasers are available below)

### LD405nm LD440nm LD473nm LD559nm LD635nm Ar458nm Ar488nm Ar515nm HeNe (G) 543nm



## System Preparation



| Welcome 19 "FV10-ASW"<br>OLYMPUS |
|----------------------------------|
| FV10-ASW                         |
| User ID: Administrator 5         |
| Password OK Cancel               |



- Turn the computer ON.
   [In case of equipped concentrated power supply, power on it first ]
- Turn the laser ON (Turning the key switch)
   2-1. LD559nm ON
   2-2. Multi Ar 458nm 488nm 515nm
   2-2. HeNe(G) (643nm) ON
- 3. Turn the mercury burner ON for Fluorescence observation.
- 4. Log on Windows

Enter Password ,Customer name is below User name: <u>Administrator</u>

Password : fluoview



User name: Administrator Password : Administrator

## Visual Observation under the Microscope

### Observation of Fluorescence Image



Hand switch



Focus x2 0 Depth Time Focus x4 XY Repeat SU TD CH1 G1 V CH2 G2 V CH3 G3 V TD1 G1 \*\* C.A Lamp HV A Gain Offset HV Gain Offset HV Gain HV Gain Offs 2 25 650 103um 20% • Laser Lase Auto - 10.0% 5.0% 5.0% 5.0% 543 488 633 Filter Mode Kalman 🗧 📀 Analog Int @ Line C Frame 2 C Photon Cnt T Seq 0%

- 1. Select an objective lens by using the hand switch
- 2. Select florescent filter cube

MEMO Fluorescence filter

NIBA: Blue Excitation / Green Fluorescence (Ex.:FITC,EGFP) WIG: Green Excitation / Red Fluorescence (Ex.:Rhodamine, DsRed)

3.

Click the button on the Fluoview software

4. Focus to the specimen

## Visual Observation under the Microscope

### Observation of Differential Interference Contrast Images





Focus x2 0 Depth Time Focus x4 XY Repeat CH1 G1 - CH2 G2 - CH3 G3 -TD1 G1 100 No. C.A Lamp ain Offset HV Gain Offset HV Gai HV Gain Offse 3 1030 î Laser Auto 5.0% 10.0% 5.0% 543 488 5.0% ilter Mode Kalman C Line C Frame 2 🗧 📀 Analog Int C Photon Cnt Sec

- 1. Select the Objective Lens
- 2. Insert the Polarizing Plate in the Light Pass
- 3. Insert the DIC prism slider in the light pass
- 4. Click the button on Fluoview software

5. Focus to the specimen

## **Overview of Operation Panel for Image Acquisition**



## Image Acquisition (Single Stain on XY Image)

Acquisition of a single image (XY plane) (fluorescence image only)
Sample: Single stain of green fluorescence dye (FITC)



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click on the Apply button.

(The DyeList panel can be closed by using the Close button.)

## Image Acquisition (Single Stain on XY Image)







4.Press XY Repeat button click to get image



: Continuous scan mode

- 5. Focus to the specimen
- 6. Adjust the green (FITC) image.



- Adjust sensitivity of <u>HV</u> and reduce noise by <u>offset</u>
- Press keyboard <u>Ctrl + H key</u> Optimized PMT adjustment brightness intensity 2 color between white and black.

Maximum intensity is 4095 (12bit) if intensity is over4095, color is changed to red (saturation)

\* Basically, Gain value is 1

## Image Acquisition (Single Stain on XY Image)



### ■Memo■

File formats specifically for the FV10-ASW

### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

8. Select AutoHV and then select ScanSpeed.
\*As the scan speed becomes slower, noise can be removed while maintaining the

can be removed while maintaining the current brightness.

- 9. Press the Stop button to stop scanning.
- 10. Click on XY, and
  "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 11. Saving the image:

Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image.

(Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

Save the image as TIFF, BMP, JPEG format Select "Export " and chose the format TIFF, BMP, JPEG.

## **Complement of adjusting the image**

| AcquisitionSetting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Size<br>Aspect Ratio • 1:1 • 4:3 • arbitrary<br>X 	 512 by 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Area<br>PanX<br>PanX<br>PanY<br>Qum 0<br>PanY<br>Qum 0<br>PanY<br>Qum 0<br>PanY<br>Qum 0<br>Qum 0<br>Q |
| Interval 0 sec Num 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

1. Click "Clip scan" button , and enclose an interesting region's image on the whole image.



- 2. pixel setting \* The standard pixel is 512 x 512
- 3. Zoom Setting

Press "XY Repeat" to scan and set zoom value.



Above image is zoomed From 1 x to 2 \* Scan speed and pixel resolution remain even zoom value is changed

4. Click Zoom scan, and be able to enclose an interesting region's on the whole image

Press XYRepeat to scan after enclosing the region



\* Scan speed and pixel resolution remain even zoom value is changed

## Complement of adjusting the image



5. Pan X,Y

Be able to move the field of view to set Pan X,Y without stage action

6. Rotation

Be able to rotate the whole image.

- Click "Auto" button to acquire Optimized Conforcal aperture Conforcal aperture ··· change confocal aperture to larger diameter for dim fluorescence image then, be able to get the more bright image. But Z axis resolution gets worse.
- 8. Laser Intensity ··· More Laser intensity is increase , more bright image is .

\* More increase laser intensity is , more discoloration image is .

 Kalman accumulation ··· Image acquisition is repeated to the specified number of times to provide an averaged image. Consequently, noise is averaged and roughness on the whole image is reduced.

Advantage: The speed of each scan is fast.

Disadvantage: Some blur occurs due to averaging of images.

## **Image Acquisition** (Double Stain on XY Image)

■ Acquisition of a single image (XY plane) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (Alexa 488) and red fluorescence dye (Alexa 546)



### Simultaneous scan

- 1. Click on the FV10-ASW software to close the fluorescence button lamp shutter. Alternatively, click on the 👗 button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click "Apply" button.

(The DyeList panel can be closed by using the Close button.)

Display after DyeApply is carried out 14

650 V Laser 633

1 0 × %

10.0%

Laser

C Line C Frame

0

Laser

☐ Sequentia

HV Gain Offset HV Gain Offset

253

Lamp

108um

() Auto

## Image Acquisition (Double Stain on XY Image)





- 4. Press the XY Repeat button to start scanning.
- 5. Adjust the green (Alexa Fluor 488) image and the red (Alexa Fluor 546) image.

(The image adjustment is outlined below. For more information, refer to Appendix 1.)

 Press the Stop button to stop scanning and press XY repeat to acquire the image. (Refer to ■Memo■.)



7. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image.

(Save as Type "oib" or "oif "file format specifically for the FV10-ASW software.)

## Image Acquisition (Double Stain on XY Image)

■■ Acquisition of a single image (XY plane) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (Alexa 488) and red fluorescence dye (Alexa 546)

Sequential scan (Line Sequential is introduced here.)





- 1. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
- 2. Check Sequential and select Line.
- 3. Adjust the green (Alexa Fluor 488) image and the red (Alexa Fluor 546) image.
- 4. Press the XY button to acquire an image.
- Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.) The image is acquired.

#### ■Memo■

File formats specifically for the FV10-ASW

<u>OIF format</u>: Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.
### Image Acquisition (Double Stain on XYZ Image)

■ Acquisition of 3D images (XYZ) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (FITC) and red fluorescence dye (Rhodamine)

This is the procedure to acquire images through Line Sequential scanning.



1. Take steps 1 to 7 described on pages

13 and 14.

- 2. Press the XY Repeat button to start scanning.
- Click on the △ and △ buttons to shift the focal point. (Refer to ■Memo■.)
- 4. When the sample upper limit is displayed on the image, accept it using the Set button.
- 5. Click on the and buttons to shift the focal point. (Refer to ■Memo■.)
- 6. When the sample lower limit is displayed on the image, accept it using the Set button.
- 7. Press the Stop button to stop scanning.
- 8. Enter StepSize, Slice (the recommended value can be referred to by using the Op button), and check the check box

#### Image Acquisition (Double Stain on XYZ Image)









- 9. Select AutoHV and then select ScanSpeed.
- 10. Select Depth.
- 11. Press the XYZ button to acquire an image.
- 12. Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 13. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### Image Acquisition (Four Stain on XY Image)

■ Acquisition of 4 stain images (XY) (fluorescence image only) ■■

Sample: Four stain of Blue fluorescence dye (DAPI) ,green fluorescence dye

(Alexa488) and red fluorescence dye (Rhodamine), far-red fluorescence dye (Cy5)

This is the procedure to acquire images through Virtual Channel scan



## Image Acquisition (Four Stain on XY Image)



## Image Acquisition (Four Stain on XY Image)





\* Be able to start at each Phase.



8. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

## Image Acquisition (Single Stain + DIC on XY Image)

■ Acquisition of a single image (XY plane) (fluorescence image and differential interference contrast image) ■■

Sample: Green fluorescence dye (FITC) and differential interference contrast image



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click on the Apply button.

(The DyeList panel can be closed by using the Close button.)

4. Check TD1.

#### Image Acquisition (Single Stain + DIC on XY Image)





- 5. Press the "**XY Repeat**" button to start scanning.
- 6. Adjust the green (FITC) image and the differential interference contrast image.
- 7. Press the "**Stop button**" to stop scanning.
- 8. Press the "**XY button**" to acquire an image.
- Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 10. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type " oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

## Merge the images between fluorescent XY image and DIC image

Edit different each files to the same file. This is available for making merge image Between fluorescent image and focused DIC image.



## Image Acquisition (Single Stain on XYZT Image)

This is available for the Time series scan experiment.







- 1. Adjust the image. \* Refer P17,18
- Enter interval time to "Interval"
   Enter interval number to "Num"
   Example: Acquiring time series scan images every 5minutes for 1hour is below,
- Select "Time" and then click XYTbutton to acquire Time series scan image.

 Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.

#### Image Acquisition (Single Stain on XYZT Image)





- Adjust the image.
   \* Refer P17,18
- 2. Insert ZDC unit to left side.
- Check "EnableZDC AF during Time Series Scan' 
   nd click "ZDC setting".
- 4. Click "**Set Offset**" to register auto focus position.
  - \* Note: Have to use glass bottom dish below, otherwise ZDC doesn't work.



- 5. Set "Interval" and "Num" and then click "XYZT" to acquire the time series image.
  - \* Note: In case of using ZDC for Time series Scan, follow below limits Interval number is more than 60 sec, Rest Time is more than 30 sec, otherwise ZDC doesn't work.
  - \* If use "TimeControler", Time Series Scan is able to done even interval number is within 60sec and Rest Time is within 30sec. 26

## Reload the image conditions







1. Open the file and click





3. The conditions (HV,Offset, CA and so on ) are reloaded .



## Image Analysis (Opening a File)



1. Double-click on a file to be opened from Explorer.

## Image Analysis (Acquire a Projection Images)



1. Click on the button to



2. To save this image, right-click on the image, select Save Display and save the image with a new name.

#### Image Analysis (Save a Z section Image as 2D file)



Save the image in step 3 or 5

- 6. Click on the 🛅 button.
- 7. A 2D View-(file name) image is created.

 Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as type "xml" is a file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### Image Analysis (Inserting the Scale Bar)



- 1. Click on the button.
- 2. While left-clicking the image, drag and drop it at a certain point.

Change the size

3. While clicking the right or left handle, move the mouse from side to side.



Change the text size, color, style, etc.

4. Select Scale Bar and then right-click on Scale Bar to select Format Setting.

5. Change the setting in this window as required.

#### Image Analysis (Rotating a Three-dimensional Image)



## Image Analysis (Saving an Image)



#### Image Analysis (Rotating a Three-dimensional animation)



To save a rotation file as an animated image, create threedimensional images according to the following procedure.

For example, try to rotate an image by 180 degrees.



- 5. Click on the More button.
- 6. Click on the Angle rotation tab.
- 7. Select the rotation axis.
- 8. Enter the rotation angle.



- 9. Select AVI File and click on Create.
- 10. Enter a file name and click on Save.

#### 2D Image Analysis (Edit the image color and contrast)



- 2. Edit contrast to drag  $\bigtriangleup$  to left or right side, and another way to edit contrast is entering value on
- of image is edited.

3. Min and Max value are changed and contrast



#### 2D Image Analysis (the image of Z section)



1. Click i and select i again, then Projection image is shown on 2D View after getting XYZ image.

2. Click 📃 and select 📃.

3. The images of Z section is shown on X axis and Y axis. According to Move to left or right side on X axis and to move to ups and down on Y axis, be able to show image of Z section each position.

- 4. The image of Z section on Y axis.
- 5. The image of Z section on X axis.

#### 2D Image Analysis (Intensity Profile of each Z sections )



#### 2D Image Analysis (Measure)



1. Enclose interesting regions by ROI

Line on interesting positions by ROI

2. Click of "measure".

|                                                                                                     | 150.780 Inte<br>79.732 Ave<br>6120.813 Max | rage             | 378548.000<br>1244.509<br>4095.000 | <u>CHS2</u><br>54771708.000<br>559.277<br>3227.000 |                                | R        |                    |        |          | on of<br>urer | ••••        | ROI<br>t.                      | is ca             | licula             | ated   | on       |         | Current<br>Zpos :10<br>Tpos :0<br>Lpos :0 |
|-----------------------------------------------------------------------------------------------------|--------------------------------------------|------------------|------------------------------------|----------------------------------------------------|--------------------------------|----------|--------------------|--------|----------|---------------|-------------|--------------------------------|-------------------|--------------------|--------|----------|---------|-------------------------------------------|
| Benet hezimformation of ROI is<br>calculated on Region                                              |                                            |                  |                                    |                                                    |                                |          |                    |        |          |               |             | -                              | Add               |                    |        |          |         |                                           |
| <u>35tdDev</u> 2115.309 1318.002     Measurement.      ✓ <u>Bisedev</u> Table(Zpos:10,Tpos:0Lpos:0) |                                            |                  |                                    |                                                    |                                |          |                    |        |          |               |             |                                |                   |                    |        |          |         |                                           |
| ROI                                                                                                 | CenterX                                    | CenterY          | Area                               | Perimeter                                          | Integration                    | Average  | Max                | Min    | Range    | StdDev        | 3StdDev     | Integration                    | Average           | Max                | Min    | Range    | StdDev  | 3StdDev                                   |
| NOT                                                                                                 | [um]                                       | [um]             | [um*2]                             | [um]                                               | CHS1                           | CHS1     | CHS1               | CHS1   | CHS1     | CHS1          | CHS1        | CHS2                           | CHS2              | CHS2               | CHS2   | CHS2     | CHS2    | CHS2                                      |
| 1                                                                                                   | 57.171                                     | 49.438           | 3129.625                           | 241.490                                            | 5478264.000                    | 1107.926 | 4095.000           | 95.000 | 4000.000 | 710.261       | 2130.783    | 2952481.000                    | 658.076           | 3590.000           | 28.000 | 3562.000 | 522.518 | 1567.55                                   |
| 2                                                                                                   | 112.522                                    | 53.402           | 1470.188                           | 194.764                                            | 0620457.000                    | 1301.724 | 4095.000           | 97.000 | 3998.000 | 883.602       | 2650.807    | 7837013.000                    | 758.280           | 3468.000           | 28.000 | 3440.000 | 561.877 | 1685.63                                   |
| 5                                                                                                   | 51.900                                     | 87.103           | 3274,688                           | 273.215                                            | 2573667.000                    | 1003.410 | 4095.000           | 94.000 | 4001.000 | 700.397       | 2101.192    | 9839166.000                    | 569.504           | 3415.000           | 53.000 | 3362.000 | 443.623 | 1330.86                                   |
| 4                                                                                                   | 80.180                                     | 111.524          | 1732.438                           |                                                    | 4386227.000                    | 879.766  | 3836.000           | 83.000 | 3753.000 | 657.656       |             | 7880740.000                    | 645.072           | 3380.000           | 25.000 | 3355.000 | 523.061 | 1569.18                                   |
| 5                                                                                                   | 150.780                                    | 79.732           | 6120.813                           |                                                    | 1878548.000                    | 1244.509 | 4095.000           | 96.000 | 3999.000 | 725.103       |             | 4771708.000                    | 559.277           | 3227.000           | 41.000 | 3186.000 | 439.334 | 1318.00                                   |
|                                                                                                     |                                            |                  | 5                                  | ). Т                                               | he i                           | nfo      | rma                | atio   | n o      | fal           | R           | Ols                            |                   |                    | -      |          |         |                                           |
| int                                                                                                 | 5                                          | 5                | 1                                  | 5 (                                                | 5 5                            | 5        | 5                  | 5      | 5        | 5             |             | 5 5                            | 5                 | 5                  | 5      | 5        | 5       | 1                                         |
| erage                                                                                               | 90.511                                     | 76.240           | 3145.550                           |                                                    | 5 6987432.600                  | 1107.467 | 4043.200           | 93.000 | 3950.200 | 735.404       |             | 2 0656221.600                  | 638.042           | 3416.000           | 35.000 | 3381.000 |         |                                           |
| (                                                                                                   | 150.780                                    | 111.524          | 6120.813                           |                                                    | 8 1878548.000                  | 1301.724 | 4095.000           | 97.000 | 4001.000 | 883.602       | Charles and | 7 4771708.000                  | 758.280           | 3590.000           | 53.000 | 3562.000 |         |                                           |
| 1                                                                                                   | 51.900                                     | 49.438           | 1470.188                           | 1.000                                              | 4 4386227.000                  | 879.766  | 3836.000           | 83.000 | 3753.000 | 657.656       |             | 7 7837013.000                  | 559.277           | 3227.000           | 25.000 | 3186.000 |         |                                           |
| ge<br>Dev                                                                                           | 98.879<br>41.309                           | 62.087<br>25.569 | 4650.625                           |                                                    | 5 7492321.000<br>5 8699715.061 | 421.958  | 259.000<br>115.828 | 5.701  | 248.000  | 225.947       |             | 0 6934695.000<br>3 5124831.492 | 199.002<br>80.326 | 363.000<br>132.286 | 28.000 | 376.000  |         |                                           |
| dDev                                                                                                | 123.928                                    | 25.309           | 5546.521                           |                                                    | 5 6099145.184                  | 517.864  | 347.485            | 17.103 | 330.731  | 259.683       |             | 0 5374494.476                  | 240.979           | 396.857            | 35.433 | 411.624  |         |                                           |
|                                                                                                     | 1251520                                    | 10/101           | 5540.52                            | 145.200                                            |                                | 011.004  | 0-11-100           | 11105  | 5301131  | 233.003       | 115,05      |                                | 2-10.010          | 000001             | 551455 | 411.024  | 192.303 |                                           |

#### 2D Image Analysis (Line Intensity Profile on the 2D image )



- 1. Line on the 2D image by ROI
- 2. Click million "Intensity Profile"
- "Intensity Profile" on the line is shown as intensity graph .
- \* State of colocalization between each Chs is figured out apart from intensity.

#### 2D Image Analysis (Histogram)



- 1. Enclose the region by ROI.
- 2. Click I "Histogram"
- 3. "Histogram" window is shown as a graph, frequency of intensity of each pixels is plotted on the region enclosed by ROI.

#### 2D Image Analysis (Line Series Analysis)



- 1. Line on the 2D image.
- 2. Click util "Line Series Analysis"
- 3. Intensity of Z position/ time on the line is shown as a graph .

## 2D Image Analysis (Co-localization)





- 1. Enclose an interesting region by ROI.
- 2. Click 🛄
- 3. Select Threshold Threshold from Annotation Mode.
- According to move Thresholds of X,Y axis to right and left ,ups and down (Enclose red color X,Y axis), Colocalization result between 2ch is changed .

Information of Co-localization is listed under the scatter plot.

## 2D image Analysis(Series Analysis TimeLapse)



1. Enclose interesting regions by ROI

2. Click

"Series Analysis"

3. "Series Analysis" graph is shown below, Y axis shows intensity, X axis shows time and then be able to see time series reaction each ROIs.



#### **Closing the System**





- 1. Exit the FV10-ASW software by selecting File/Exit.
- 2. Exit the Windows.
- (1) Select Start/Shut Down.
- (2) On the Shut Down Window, select Shut Down and click on OK.
- Turn the laser OFF. (Turn the key switch to the OFF position.)
- 3-1. LD559nm OFF
- 3-2. Multi Ar (458 nm, 488 nm, 514 nm) OFF
- 3-3. HeNe (G) (543 nm) OFF
- 4. Turn the mercury burner power OFF.



# Laser Conforcal Scanning Microscope FV1000D Spectral Type (Upright Microscope BX61)

# **Operation Manual**



# <u>Contents</u>

| System introdution                                                                                    | • 3     |
|-------------------------------------------------------------------------------------------------------|---------|
| FV1000D Laser DyeList                                                                                 | 4       |
| System Preparation                                                                                    | 5       |
| Visible Observation                                                                                   | _       |
| Observation of Fluorescence image Observation of Differential Interference Contrast Images            |         |
| Image Acquisition                                                                                     |         |
| Overview of Operation Panel for Image Acquisition                                                     |         |
| Single Stain on XY Image                                                                              | 9-11    |
| Complement of adjusting the image                                                                     |         |
| Double Stain on XY Image                                                                              | · 16    |
| Double Stain on XYZ image                                                                             |         |
| Four Stain on XY Image                                                                                | 19-21   |
| Single Stain + DIC on XY Image                                                                        |         |
| Merge the image between fluorescent XY image and DIC image                                            | - 24    |
| Spectral Image on XYZ Image                                                                           | 25-27   |
| Unmixing                                                                                              | - 28-30 |
| Reload the image conditions                                                                           | 32      |
| Image Analysis                                                                                        |         |
| Image Analysis<br>Overview of the 2D Operation Panel / Opening a file                                 | · 33    |
| Making 2D Z projection file Images<br>Saving a Z section image as 2D image<br>Inserting the Scale Bar | - 34    |
| Saving a Z section image as 2D image                                                                  | 35      |
| Inserting the Scale Bar                                                                               | 36      |
| Rotating a Three-dimensional Image                                                                    | - 37    |
| Saving an Image                                                                                       |         |
| Saving Rotating a Three-dimensional animation file                                                    | 39      |
| 2D Image Analysis                                                                                     |         |
| Edit the image color and contrast                                                                     | - 40    |
| The image of Z section                                                                                | - 41    |
| Intensity Profile of each Z sections                                                                  | - 42    |
| Measure                                                                                               | -       |
| Line Intensity Profile on the 2D image / Histogram                                                    | - 44    |
| Line Series Analysis / Co-localization                                                                | 45      |
| Closing the System                                                                                    | - 46    |

## **Spectral Type Main Scanner**



#### Dye List (FV1000D Lasers are available below)

#### LD405nm LD440nm LD473nm LD559nm LD635nm Ar458nm Ar488nm Ar515nm HeNe (G) 543nm



# System Preparation



| Welcome to "FV10-ASW" OLYMPUS |
|-------------------------------|
| FV10-ASW                      |
| User ID: Administrator 5      |
| Password OK Cancel            |



- Turn the computer ON.
   [In case of equipped concentrated power supply, power on it first]
- 2. Turn the laser ON (Turning the key switch)
  2-1. LD559nm ON
  2-2. Multi Ar 458nm 488nm 515nm
  2-2. HeNe(G) (643nm) ON
- 3. Turn the mercury burner ON for Fluorescence observation.
- 4. Log on Windows

Enter Password ,Customer name is below User name: <u>Administrator</u> Password : fluoview



User name: Administrator Password : Administrator

#### **Visual Observation under the Microscope**

#### Observation of Fluorescence Image



Hand switch



- 1. Select an objective lens by using the hand switch
- 2. Select florescent filter cube



3.

Click the button on the Fluoview software

| Focus x4 XY Rep           | eat XY LZI S   | bitop Depth<br>Time          | -                                                    | Bleach | Stop |
|---------------------------|----------------|------------------------------|------------------------------------------------------|--------|------|
| CH1 G1 -<br>FITC          | CH2 62 -       | СНЗ 👩 🛨                      | TD1 G1 -                                             | SU     | TD   |
| HV Gain Offset            | HV Gain Offset | IV Gain<br>▲ ▲ ▲             | HV Gain Offset                                       | C.A    | Lamp |
|                           |                |                              |                                                      |        |      |
| • • •<br>650 1 0<br>V X % | 650 1 0 6      |                              | 253 1 0<br>V X %                                     | 103um  | 20%  |
| Laser                     |                | v x %<br>aser<br>33 ▼ 5.0% ÷ | ∨         X         %           Laser         5.0% ÷ | Auto   |      |
| Filter Mode               | ne C Frame 2 - | Analog In                    | nt C Photon Cnt                                      |        |      |
| 1 runnar + ca             | ie a trune je  |                              | a v i noton cia                                      |        |      |

4. Focus to the specimen

#### Visual Observation under the Microscope

#### ■■ Observation of Differential Interference Contrast Images ■■







- 1. Select the Objective Lens
- 2. Insert the Polarizing Plate in the Light Pass
- 3. Insert the DIC prism slider in the light pass
- 4. Click the button on Fluoview software

5. Focus to the specimen

#### **Overview of Operation Panel for Image Acquisition**



## Image Acquisition (Single Stain on XY Image)

Acquisition of a single image (XY plane) (fluorescence image only)
Sample: Single stain of green fluorescence dye (FITC)



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click on the Apply button.

(The DyeList panel can be closed by using the Close button.)

### Image Acquisition (Single Stain on XY Image)







4. Press XY Repeat button click to get image



- : Continuous scan mode
- 5. Focus to the specimen
- 6. Adjust the green (FITC) image.



- Adjust sensitivity of <u>HV</u> and reduce noise by <u>offset</u>
- Press keyboard <u>Ctrl + H key</u> Optimized PMT adjustment brightness intensity 2 color between white and black,

Maximum intensity is 4095 (12bit) if intensity is over4095, color is changed to red (saturation)

\* Basically, Gain value is 1
# Image Acquisition (Single Stain on XY Image)



#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

8. Select AutoHV and then select ScanSpeed.
\*As the scan speed becomes slower, noise can be removed while maintaining the

can be removed while maintaining the current brightness.

- 9. Press the Stop button to stop scanning.
- 10. Click on XY, and
  "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 11. Saving the image:

Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image.

(Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

Save the image as TIFF,BMP,JPEG format Select "Export" and chose the format TIFF, BMP, JPEG.

# **Complement of adjusting the image**

| AcquisitionSetting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Mode<br>← Fast 2.0us/Pixel Slow<br>← Fast 2.0us/Pixel Slow<br>← OHV<br>F:2.0us L:2.116ms F:1.10Zs 5:1.1s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Size<br>Aspect Patio © 1:1 © 4:3 © arbitrary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aspect Ratio   ● 1:1   ● 4:3   ● arbitrary     X     ▶   512 by 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{c c} & & & & \\ \hline \\ \hline$ |
| Laser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ► 458 <b>▲</b> ► 15.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ✓         488         ✓         Zogm Reset butt           515         ✓         7.0 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ✓     543                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ✓ 633 ◀                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Microscope<br>PLAPO 60X 03 NA:1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| IV Cat I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A Start Go 1.00 ÷ um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Center Go -0.50um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| End Set um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 120.69um                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Set 0 Slices 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Focus Handle On Escape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| X:0.00um/pix Y:0.00um/pix Z:0.00um/slice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <br>TimeScan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Interval 0 sec Num 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

1. Click "Clip scan" button , and enclose an interesting region's image on the whole image.



- 2. pixel setting \*The standard pixel is 512 x 512
- 3. Zoom Setting

Press "XY Repeat" to scan and set zoom value.



. Click Zoom scan, and be able to enclose an interesting region on the whole image

Press XYRepeat to scan after enclosing the area



\* Scan speed and pixel resolution remain even zoom value is changed

# Complement of adjusting the image



5. Pan X,Y

Be able to move the field of view to set Pan X,Y without stage action

6. Rotation

Be able to rotate the whole image.

- Click "Auto" button to acquire Optimized Conforcal aperture Conforcal aperture ··· change conforcal aperture to larger diameter for dim fluorescence image then, be able to get the more bright image. But Z axis resolution gets worse.
- 8. Laser Intensity · · · More Laser intensity is increase , more bright image is .

\* More increase laser intensity is , more discoloration image is .

 Kalman accumulation ··· Image acquisition is repeated to the specified number of times to provide an averaged image. Consequently, noise is averaged and roughness on the whole image is reduced.

Advantage: The speed of each scan is fast.

Disadvantage: Some blur occurs due to averaging of images.

# **Image Acquisition** (Double Stain on XY Image)

■ Acquisition of a single image (XY plane) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (Alexa 488) and red fluorescence dye (Alexa 546)



### Simultaneous scan

- 1. Click on the FV10-ASW software to close the fluorescence button lamp shutter. Alternatively, click on the 👗 button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click "Apply" button.

(The DyeList panel can be closed by using the Close button.)

Display after DyeApply is carried out 14

650 V Laser 633

1 0 × %

10.0%

Laser

C Line C Frame

0

Laser

☐ Sequentia

HV Gain Offset HV Gain Offset

253

Lamp

108um

() Auto

# Image Acquisition (Double Stain on XY Image)





- 4. Press the XY Repeat button to start scanning.
- 5. Adjust the green (Alexa Fluor 488) image and the red (Alexa Fluor 546) image.

(The image adjustment is outlined below. For more information, refer to Appendix 1.)

 Press the Stop button to stop scanning and press XY repeat to acquire the image. (Refer to ■Memo■.)



7. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image.

(Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

# Image Acquisition (Double Stain on XY Image)

■■ Acquisition of a single image (XY plane) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (Alexa 488) and red fluorescence dye (Alexa 546)

Sequential scan (Line Sequential is introduced here.)





- 1. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
- 2. Check Sequential and select Line.
- 3. Adjust the green (Alexa Fluor 488) image and the red (Alexa Fluor 546) image.
- 4. Press the XY button to acquire an image.
- Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.) The image is acquired.

#### ■Memo■

File formats specifically for the FV10-ASW

<u>OIF format</u>: Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

# **Image Acquisition** (Double Stain on XYZ Image)

Acquisition of 3D images (XYZ) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (FITC) and red fluorescence dye (Rhodamine)

> This is the procedure to acquire images through Line Sequential scanning.



1. Take steps 1 to 7 described on pages

13 and 14.

- 2. Press the XY Repeat button to start scanning.
- 3. Click on the  $\triangle$  and  $\triangle$  buttons to shift the focal point. (Refer to ■Memo■.)
- 4. When the sample upper limit is displayed on the image, accept it using the Set button.
- 5. Click on the  $\overline{\mathbf{v}}$  and  $\underline{\mathbf{V}}$  buttons to shift the focal point. (Refer to ■Memo■.)
- 6. When the sample lower limit is displayed on the image, accept it using the Set button.
- 7. Press the Stop button to stop scanning.
- 8. Enter StepSize, Slice (the recommended value can be referred to by using the Op button), and check the check box

# Image Acquisition (Double Stain on XYZ Image)









- 9. Select AutoHV and then select ScanSpeed.
- 10. Select Depth.
- 11. Press the XYZ button to acquire an image.
- Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 13. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

# **Image Acquisition** (Four Stain on XY Image)

Acquisition of 4 stain images (XY) (fluorescence image only) ■■

Sample: Four stain of Blue fluorescence dye (DAPI), green fluorescence dye

(Alexa488) and red fluorescence dye (Rhodamine), far-red fluorescence dye (Cy5)

This is the procedure to acquire images through Virtual Channel scan



# Image Acquisition (Four Stain on XY Image)



# Image Acquisition (Four Stain on XY Image)





\* Be able to start at each Phase.



8. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

# Image Acquisition (Single Stain + DIC on XY Image)

■ Acquisition of a single image (XY plane) (fluorescence image and differential interference contrast image) ■■

Sample: Green fluorescence dye (FITC) and differential interference contrast image



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click on the Apply button.

(The DyeList panel can be closed by using the Close button.)

4. Check TD1.

# Image Acquisition (Single Stain + DIC on XY Image)





- 5. Press the "**XY Repeat**" button to start scanning.
- 6. Adjust the green (FITC) image and the differential interference contrast image.
- 7. Press the "**Stop button**" to stop scanning.
- 8. Press the "**XY button**" to acquire an image.
- Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 10. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

# Merge the images between fluorescent XY image and DIC image

Edit different each files to the same file. This is available for making merge image Between fluorescent image and focused DIC image.



# Image Acquisition (Spectral Image on XYL Image)

■■ Acquisition of a spectral image (XYL) ■■

Sample: Double stain of green fluorescence dye (Alexa Fluor 488) and green fluorescence dye (YOYO-1)



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the *button to view the optical path diagram.*
- 3





# Image Acquisition (Spectral Image on XYL Image)







- 4. Click on the VBF button, and the Spectral Setting window appears.
- 5. Set the slit width for CHS1 to 20 nm, for example.
- 6. Press the XY Repeat button to start scanning.
- 7. While observing the image, Click the left side of slit and drag to the point which the highest brightness is achieved.
  - Note: Move the slit position only while keeping the slit width at 20 nm.
- 8. Adjust the image on the highest brightness.
- 9. Press the Stop button to stop scanning.

# Image Acquisition (Spectral Image on XYL Image)

| LambdaScan     | 0             |
|----------------|---------------|
| Start 450 nm   | End 650 nm    |
| StepSize 10 nm | Num 19 👝      |
| Band           | Width 20 nm 🐓 |



| 🔲 Image | Acquisitio | on Control |        |       |      |
|---------|------------|------------|--------|-------|------|
|         | Focus x2   |            |        |       |      |
|         | Focus x4   | XY Repeat  | XY     | Zt    | Stop |
|         |            |            | Lambda | Depth | Time |
|         |            | 1          | 2      |       |      |

|          |           |    | <u></u> | - 1  |       |
|----------|-----------|----|---------|------|-------|
| Focus x2 |           |    |         |      | Douth |
| Focus x4 | XY Repeat | XY |         | Done | Depth |

- 10. Set the range of wavelength to be acquired, the slit width and the step.
  - Start = Start wavelength
  - •End = End wavelength
  - Resolution = Slit width
  - StepSize = Step
- 11. Select AutoHV and then select ScanSpeed.

\*As the scan speed becomes slower, noise can be removed while maintaining the current brightness.

#### 12. Select Lambda.

- 13. Press the XYZ button to acquire an image.
- 14. Click on SeriesDone, and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.

# <u>Image Analysis (Unmixing)</u>

## I. When each fluorescence dye point is clear

From an XYL image where fluorescence dyes with similar fluorescence spectrums are present together, derive the fluorescence spectrum for each fluorescence dye and obtain an unmixed image based on the fluorescence spectrums.

Sample: Double stain of green fluorescence dye (Alexa Fluor 488) and green fluorescence dye (YOYO-1)







Unmixed image

- 1. Open an XYL image file with both Alexa Fluor 488 and YOYO1 applied.
- Enclose a point dyed with Alexa Fluor 488 only and a point dyed with YOYO1 only.
- 3. From Processing on the menu bar, select Spectral Deconvolution.
- 4. Double-click on ROI1 and ROI2.
- 5. Check that the Processing Type is set to "Normal" and click on Execute.
- 6. An unmixed image is obtained.



# Image Analysis (Unmixing) I. When each fluorescence dye point is clear

Sample: single stain of green fluorescence dye (GFP) and auto fluorescence from cell







Unmixing image between GFP and Auto fluorescence 29

- 1. Open the XYL image (GFP + auto fluorescence).
- 2. Enclose a point dyed with GFP only and a point dyed with auto fluorescence only.
- 3. From Processing on the menu bar, select Spectral Deconvolution.
- 4. Double-click on ROI1(GFP) and ROI2(Auto fluorescence).
- 5. Check that the Processing Type is set to "Normal" and click on Execute.
- 6. An unmixing image is obtained.

Green color is GFP. Gray color is Auto fluorescence.

# Image Analysis (Unmixing)

## II. When a control sample is used

From an XYL image with a single type of fluorescence dye, derive the fluorescence spectrum of the dye and obtain an unmixed image based on the fluorescence spectrum.

Sample: Double stain of green fluorescence dye (Alexa Fluor 488) and green fluorescence dye (YOYO-1)



- 8. Open an XYL image file with both Alexa Fluor 488 and YOYO1 applied.
- 9. From Processing on the menu bar, select Spectral Deconvolution.

- 10. Double-click on Alexa Fluor 488 and YOYO1 (which have been registered) in the database of fluorescence spectrums.
- 11. Check that the Processing Type is set to "Normal" and click on Execute.
- 12. An unmixed image is obtained.

# Image Analysis (Unmixing)

## III. When only the number of types of fluorescence dyes is known (Blind Unmixing)

From an XYL image where fluorescence dyes with similar fluorescence spectrums are present together, obtain an unmixed image based on only the number of types of fluorescence dyes.

Sample: Sample with two unknown types of fluorescence dyes





Unmixed image

1. Open an XYL image file for a sample that has two unknown types of fluorescence dyes.

- 2. From Processing on the menu bar, select Spectral Deconvolution.
- 3. Click on two Calculate check boxes. (Click on three boxes when three types of fluorescence dyes are used.)
- 4. Check that Processing Type is set to "Blind" and click on Execute.

5. An unmixed image is obtained.

# Reload the image conditions







1. Open the file and click



2. Click 💕

3. The conditions (HV,Offset, CA and so on ) are reloaded .



# Image Analysis (Opening a File)



1. Double-click on a file to be opened from Explorer.

# Image Analysis (Acquire a Projection Images)



1. Click on the button to



2. To save this image, right-click on the image, select Save Display and save the image with a new name.

# Image Analysis (Save a Z section Image as 2D file)



Save the image in step 3 or 5

- 6. Click on the 🛅 button.
- 7. A 2D View-(file name) image is created.

 Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as type "xml" is a file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

# Image Analysis (Inserting the Scale Bar)



- 1. Click on the *button*.
- 2. While left-clicking the image, drag and drop it at a certain point.

Change the size

3. While clicking the right or left handle, move the mouse from side to side.



Change the text size, color, style, etc.

4. Select Scale Bar and then right-click on Scale Bar to select Format Setting.

5. Change the setting in this window as required.

# Image Analysis (Rotating a Three-dimensional Image)



# Image Analysis (Saving an Image)



# Image Analysis (Rotating a Three-dimensional animation)



To save a rotation file as an animated image, create threedimensional images according to the following procedure.

For example, try to rotate an image by 180 degrees.



- 5. Click on the More button.
- 6. Click on the Angle rotation tab.
- 7. Select the rotation axis.
- 8. Enter the rotation angle.



- 9. Select AVI File and click on Create.
- 10. Enter a file name and click on Save.

# 2D Image Analysis (Edit the image color and contrast)



2.Edit contrast to drag to left or right side, and another way to edit contrast is entering value on "Max" and "Min" (Max4095, Min0)

- 3. <u>Min and Max</u> value are changed and contrast of image is edited.
  - \* According to get Min value up , be able to reduce noise of the image.



Red

# 2D Image Analysis (the image of Z section )



1. Click and select again, then Projection image is shown on 2D View after getting XYZ image.

2. Click 📃 and select 📃.

 The images of Z section is shown on X axis and Y axis.
 According to Move to left or right side on X axis and to move to ups and down on Y axis, be able to show image of Z section each position.

- 4. The image of Z section on Y axis.
- 5. The image of Z section on X axis.

# 2D Image Analysis (Intensity Profile of each Z sections )



# 2D Image Analysis (Measure )



1. Enclose interesting regions by ROI

Line on interesting positions by ROI -

2. Click of "measure".

| enterX<br>enterY<br>rea | ROI IIo. 5 Stat<br>150.780 Inte<br>79.732 Ave<br>6120.813 Max | grates 1211<br>rage     | 878548.000<br>1244.509<br>4095.000 | <u>2HS2</u><br>54771708.000<br>559.27<br>3227.000 | 7             | th<br>R  |          | form   | natic    | on of   | all         | easu<br>ROI<br>t. |         |          | ,      |          | n       | Image Info<br>Current<br>Zpos :10<br>Tpos :0<br>Lpos :0 |
|-------------------------|---------------------------------------------------------------|-------------------------|------------------------------------|---------------------------------------------------|---------------|----------|----------|--------|----------|---------|-------------|-------------------|---------|----------|--------|----------|---------|---------------------------------------------------------|
|                         | ne im<br>alcui                                                | ge                      | 3999,000                           | n off.00<br>3186.00<br>Revo                       |               | IS       |          |        |          |         |             |                   |         |          |        |          | -       | Add                                                     |
| h                       | Aeast                                                         | urem                    | 2175.309                           | 1318.00                                           |               |          |          |        |          |         |             |                   |         |          |        |          |         | <b>v</b> Auto                                           |
| ROI                     | ble(Zpos:10,Tp<br>CenterX                                     | os:0,Lpos:0)<br>CenterY | Area                               | Perimeter                                         | Integration   | Average  | Мах      | Min    | Range    | StdDev  | 3StdDev     | Integration       | Average | Max      | Min    | Range    | StdDev  | 3StdDev                                                 |
| ivoi                    | [um]                                                          | [um]                    | [um*2]                             | [um]                                              | CHS1          | CHS1     | CHS1     | CHS1   | CHS1     | CHS1    | CHS1        | CHS2              | CHS2    | CHS2     | CHS2   | CHS2     | CHS2    | CHS2                                                    |
| 1                       | 57.171                                                        | 49.438                  | 3129.625                           | 241.490                                           | 5478264.000   | 1107.926 | 4095.000 | 95.000 | 4000.000 | 710.261 | 2130.783    | 2952481.000       | 658.076 | 3590.000 | 28.000 | 3562.000 | 522.518 | 1567.55                                                 |
| <b>–</b> <sup>2</sup>   | 112.522                                                       | 53.402                  | 1470.188                           | 194.764                                           | 0620457.000   | 1301.724 | 4095.000 | 97.000 | 3998.000 | 883.602 | 2650.807    | 7837013.000       | 758.280 | 3468.000 | 28.000 | 3440.000 | 561.877 | 1685.63                                                 |
| 5                       | 51.900                                                        | 87.103                  | 3274.688                           | 273.215                                           | 2573667.000   | 1003.410 | 4095.000 | 94.000 | 4001.000 | 700.397 | 2101.192    | 9839166.000       | 569.504 | 3415.000 | 53.000 | 3362.000 | 443.623 | 1330.86                                                 |
| 4                       | 80.180                                                        | 111.524                 | 1732.438                           |                                                   | 4386227.000   | 879.766  | 3836.000 | 83.000 | 3753.000 | 657.656 |             | 7880740.000       | 645.072 | 3380.000 | 25.000 | 3355.000 | 523.061 | 1569.18                                                 |
| 5                       | 150.780                                                       | 79.732                  | 6120.813                           |                                                   | 1878548.000   | 1244.509 | 4095.000 | 96.000 | 3999.000 | 725.103 |             | 4771708.000       | 559.277 | 3227.000 | 41.000 | 3186.000 | 439.334 | 1318.00                                                 |
|                         | J                                                             |                         | 5                                  | 5. T                                              | he i          | nfo      | rma      | atio   | n o      | fal     | R           | Ols               |         | _        | _      | _        |         | _                                                       |
| int                     | 5                                                             | 5                       |                                    | 5                                                 | 5 5           | 5        | 5        | 5      | 5        | 5       |             | 5 5               | 5       | 5        | 5      | 5        | 5       |                                                         |
| erage                   | 90.511                                                        | 76.240                  | 3145.55                            | 246.79                                            | 5 6987432.600 | 1107.467 | 4043.200 | 93.000 | 3950.200 | 735.404 | 2206.21     | 2 0656221.600     | 638.042 | 3416.000 | 35.000 | 3381.000 | 498.083 | 1494.                                                   |
| ¢                       | 150.780                                                       | 111.524                 | 6120.81                            |                                                   | 8 1878548.000 | 1301.724 | 4095.000 | 97.000 | 4001.000 | 883.602 | Charles and | 7 4771708.000     | 758.280 | 3590.000 | 53.000 | 3562.000 |         | 1685.                                                   |
| 1                       | 51.900                                                        | 49,438                  | 1470.18                            |                                                   | 4 4386227.000 | 879.766  | 3836.000 | 83.000 | 3753,000 | 657.656 |             | 7 7837013.000     | 559.277 | 3227.000 | 25.000 | 3186.000 |         | 1318.                                                   |
| ige                     | 98.879                                                        | 62.087                  | 4650.62                            | 2000                                              | 5 7492321.000 | 421.958  | 259.000  | 14.000 | 248.000  | 225.947 |             | 0 6934695.000     | 199.002 | 363.000  | 28.000 | 376.000  |         | 367.                                                    |
| Dev                     | 41.309                                                        | 25.569                  | 1848.84                            |                                                   | 5 8699715.061 | 172.621  | 115.828  | 5.701  | 110.244  | 86.561  |             | 3 5124831.492     | 80.326  | 132.286  | 11.811 | 137.208  |         | 162.                                                    |
| dDev                    | 123.928                                                       | 76.707                  | 5546.52                            | 1 143.20                                          | 5 6099145.184 | 517.864  | 347.485  | 17.103 | 330.731  | 259.683 | 179.05      | 0 5374494.476     | 240.979 | 396.857  | 35.433 | 411.624  | 162.305 | 486.                                                    |
|                         |                                                               |                         |                                    |                                                   |               |          |          |        |          |         |             |                   |         |          |        |          |         | ×                                                       |

# 2D Image Analysis (Line Intensity Profile on the 2D image)



Line on the 2D image by ROI
 Click ("Intensity Profile")
 "Intensity Profile" on the line is shown as intensity graph .
 \* State of colocalization between each Chs is figured out apart from

# 2D Image Analysis (Histogram)



- 1. Enclose the interested region by ROI.
- 2. Click III "Histogram"

intensity.

3. "Histogram" window is shown as a graph, frequency of intensity of each pixels is plotted on the region enclosed by ROI.

# 2D Image Analysis (Line Series Analysis)



- 1. Line on the interesting region.
- 2. Click (Line Series Analysis)
- 3. Intensity of Z position/ time on the line is shown as a graph .

# 2D Image Analysis (Co-localization)





- 1. Enclose an interesting area by ROI.
- 2. Click 🛄
- 3. Select Threshold Threshold from Annotation Mode.
- According to move Thresholds of X,Y axis to right and left ,ups and down (Enclose red color X,Y axis), Colocalization result between 2ch is changed .

Information of Co-localization is listed under the scatter plot.

# **Closing the System**



- 1. Exit the FV10-ASW software by selecting File/Exit.
- 2. Exit the Windows.
- (1) Select Start/Shut Down.
- (2) On the Shut Down Window, select Shut Down and click on OK.
- Turn the laser OFF.
   (Turn the key switch to the OFF position.)
- 3-1. LD559nm OFF
- 3-2. Multi Ar (458 nm, 488 nm, 514 nm) OFF
- 3-3. HeNe (G) (543 nm) OFF
- 4. Turn the mercury burner power OFF.


# Laser Conforcal Scanning Microscope FV1000D Filter Type (Upright Microscope BX61)

# **Operation Manual**



# <u>Contents</u>

| System introduction                                                                                                                                                                                                                                                                                                                                                                                        | 3                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| FV1000D Laser DyeList                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                  |
| System Preparation                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                  |
| Visible Observation                                                                                                                                                                                                                                                                                                                                                                                        | C                                                                  |
| Observation of Fluorescence image Observation of Differential Interference Contrast Images                                                                                                                                                                                                                                                                                                                 | 6<br>7                                                             |
| Image Acquisition         Overview of Operation Panel for Image Acquisition         Single Stain on XY Image         Complement of adjusting the image         Double Stain on XY Image         Sequential scan Line Sequential         Double Stain on XYZ image         Four Stain on XY Image         Single Stain + DIC on XY Image         Merge the image between fluorescent XY image and DIC image | 8<br>9-11<br>12-13<br>14-15<br>16<br>17-18<br>19-21<br>22-23<br>24 |
| Reload the image conditions                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                 |
| Image Analysis                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |
| Overview of the 2D Operation Panel / Opening a file                                                                                                                                                                                                                                                                                                                                                        | 26                                                                 |
| Making 2D Z projection file Images                                                                                                                                                                                                                                                                                                                                                                         | 27                                                                 |
| Saving a Z section image as 2D image                                                                                                                                                                                                                                                                                                                                                                       | 28                                                                 |
| Inserting the Scale BarRotating a Three-dimensional Image                                                                                                                                                                                                                                                                                                                                                  | 29<br>30                                                           |
| Saving an Image                                                                                                                                                                                                                                                                                                                                                                                            | 31                                                                 |
| Saving Rotating a Three-dimensional animation file                                                                                                                                                                                                                                                                                                                                                         | 32                                                                 |
| 2D Image Analysis                                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| Edit the image color and contrast                                                                                                                                                                                                                                                                                                                                                                          | 33                                                                 |
| The image of Z section                                                                                                                                                                                                                                                                                                                                                                                     | 34                                                                 |
| Intensity Profile of each Z sections                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                 |
| Medaule                                                                                                                                                                                                                                                                                                                                                                                                    | 36<br>27                                                           |
| Line Intensity Profile on the 2D image / Histogram                                                                                                                                                                                                                                                                                                                                                         | 37<br>38                                                           |
| Closing the System                                                                                                                                                                                                                                                                                                                                                                                         | 39                                                                 |

# Filter Type Main Scanner



### **Dye List (FV1000D Lasers are available below)**

#### LD405nm LD440nm LD473nm LD559nm LD635nm Ar458nm Ar488nm Ar515nm HeNe(G)543nm



# System Preparation



| Welcome to "FV10-ASW" OLYMPUS           |
|-----------------------------------------|
| FV10-ASW                                |
| User ID: Administrator 5 -<br>Password: |
| Password OK Cancel                      |



- Turn the computer ON.
   [In case of equipped concentrated power supply, power on it first ]
- 2. Turn the laser ON (Turning the key switch)
  2-1. LD559nm ON
  2-2. Multi Ar 458nm 488nm 515nm
  2-2. HeNe(G)(643nm) ON
- 3. Turn the mercury burner ON for Fluorescence observation.
- 4. Log on Windows
- Enter Password,Customer name is below User name: Administrator Password : fluoview
- 5. EVID-ASW Double click this icon to log on to ASW

User name: Administrator Password : Administrator

### **Visual Observation under the Microscope**

### Observation of Fluorescence Image



Hand switch



- 1. Select an objective lens by using the hand switch
- 2. Select florescent filter cube



3.

Click the button on the Fluoview software



4. Focus to the specimen

### Visual Observation under the Microscope

### ■■ Observation of Differential Interference Contrast Images ■■







- 1. Select the Objective Lens
- 2. Insert the Polarizing Plate in the Light Pass
- 3. Insert the DIC prism slider in the light pass
- 4. Click the button on Fluoview software

5. Focus to the specimen

### **Overview of Operation Panel for Image Acquisition**



### Image Acquisition (Single Stain on XY Image)

■■ Acquisition of a single image (XY plane) (fluorescence image only) ■■ <u>Sample: Single stain of green fluorescence dye (FITC)</u>



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click on the Apply button.

(The DyeList panel can be closed by using the Close button.)

### Image Acquisition (Single Stain on XY Image)







4. Press XY Repeat button click to get image



- : Continuous scan mode
- 5. Focus to the specimen
- 6. Adjust the green (FITC) image.



- Adjust sensitivity of <u>HV</u> and reduce noise by <u>offset</u>
- Press keyboard <u>Ctrl + H key</u> Optimized PMT adjustment brightness intensity 2 color between white and black,

Maximum intensity is 4095(12bit) if intensity is over4095, color is changed to red (saturation)

\* Basically, Gain value is 1

### Image Acquisition (Single Stain on XY Image)



#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

8. Select AutoHV and then select ScanSpeed.
\*As the scan speed becomes slower, noise can be removed while maintaining the

can be removed while maintaining the current brightness.

- 9. Press the Stop button to stop scanning.
- 10. Click on XY, and
  "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 11. Saving the image:

Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image.

(Save as Type " oib" or "oif" file format specifically for the FV10-ASW software.)

Save the image as TIFF, BMP, JPEG format Select "Export" and chose the format TIFF, BMP, JPEG.

### **Complement of adjusting the image**



\* Scan speed and pixel resolution remain even zoom value is changed

### Complement of adjusting the image



### **Image Acquisition** (Double Stain on XY Image)

■ Acquisition of a single image (XY plane) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (Alexa 488) and red fluorescence dye (Alexa 546)



#### Simultaneous scan

- 1. Click on the FV10-ASW software to close the fluorescence button lamp shutter. Alternatively, click on the 👗 button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click "Apply" button.

(The DyeList panel can be closed by using the Close button.)

Display after DyeApply is carried out 14

650 V Laser 633

1 0 × %

10.0%

Laser

C Line C Frame

0

Laser

☐ Sequentia

HV Gain Offset HV Gain Offset

253

Lamp

108um

() Auto

### Image Acquisition (Double Stain on XY Image)





- 4. Press the XY Repeat button to start scanning.
- 5. Adjust the green (Alexa Fluor 488) image and the red (Alexa Fluor 546) image.

(The image adjustment is outlined below. For more information, refer to Appendix 1.)

 Press the Stop button to stop scanning and press XY repeat to acquire the image. (Refer to ■Memo■.)



7. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image.

(Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

### Image Acquisition (Double Stain on XY Image)

■■ Acquisition of a single image (XY plane) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (Alexa 488) and red fluorescence dye (Alexa 546)

Sequential scan (Line Sequential is introduced here.)





- 1. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
- 2. Check Sequential and select Line.
- 3. Adjust the green (Alexa Fluor 488) image and the red (Alexa Fluor 546) image.
- 4. Press the XY button to acquire an image.
- Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.) The image is acquired.

#### ■Memo■

File formats specifically for the FV10-ASW

<u>OIF format</u>: Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### **Image Acquisition** (Double Stain on XYZ Image)

Acquisition of 3D images (XYZ) (fluorescence image only) ■■

Sample: Double stain of green fluorescence dye (FITC) and red fluorescence dye (Rhodamine)

> This is the procedure to acquire images through Line Sequential scanning.



1. Take steps 1 to 7 described on pages

13 and 14.

- 2. Press the XY Repeat button to start scanning.
- 3. Click on the  $\triangle$  and  $\triangle$  buttons to shift the focal point. (Refer to ■Memo■.)
- 4. When the sample upper limit is displayed on the image, accept it using the Set button.
- 5. Click on the 🔽 and 💟 buttons to shift the focal point. (Refer to ■Memo■.)
- 6. When the sample lower limit is displayed on the image, accept it using the Set button.
- 7. Press the Stop button to stop scanning.
- 8. Enter StepSize, Slice (the recommended value can be referred to by using the Op button), and check the check box

### Image Acquisition (Double Stain on XYZ Image)









- 9. Select AutoHV and then select ScanSpeed.
- 10. Select Depth.
- 11. Press the XYZ button to acquire an image.
- 12. Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 13. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### Image Acquisition (Four Stain on XY Image)

■ Acquisition of 4 stain images (XY) (fluorescence image only) ■■

Sample: Four stain of Blue fluorescence dye (DAPI) ,green fluorescence dye

(Alexa488) and red fluorescence dye (Rhodamine), far-red fluorescence dye (Cy5)

This is the procedure to acquire images through Virtual Channel scan



19

### Image Acquisition (Four Stain on XY Image)



### Image Acquisition (Four Stain on XY Image)





\* Be able to start at each Phase.



8. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW software.

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### Image Acquisition (Single Stain + DIC on XY Image)

■ Acquisition of a single image (XY plane) (fluorescence image and differential interference contrast image) ■■

Sample: Green fluorescence dye (FITC) and differential interference contrast image



- Click on the FV10-ASW software button to close the fluorescence lamp shutter. Alternatively, click on the button to close the halogen bulb shutter.
- 2. Click on the DyeList button. On the DyeList panel, double-click on a fluorescence reagent to be used for observation.
  - \* To cancel the selection and select a different reagent, double-click on the fluorescence dye listed on the Assign Dyes window and take step 2 again.
- 3. Click on the Apply button.

(The DyeList panel can be closed by using the Close button.)

4. Check TD1.

### Image Acquisition (Single Stain + DIC on XY Image)





- 5. Press the "**XY Repeat**" button to start scanning.
- 6. Adjust the green (FITC) image and the differential interference contrast image.
- 7. Press the "**Stop button**" to stop scanning.
- 8. Press the "**XY button**" to acquire an image.
- Click on "SeriesDone", and "2D View-LiveImage(x)" is displayed on the window bar for the image that has been acquired.
- 10. Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as Type "oib" or "oif" file format specifically for the FV10-ASW

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

## Merge the images between fluorescent XY image and DIC image

Edit different each files to the same file. This is available for making merge image Between fluorescent image and focused DIC image.



## Reload the image conditions







1. Open the file and click





3. The conditions (HV,Offset, CA and so on ) are reloaded .



### Image Analysis (Opening a File)



1. Double-click on a file to be opened from Explorer.

### Image Analysis (Acquire a Projection Images)



1. Click on the button to



2. To save this image, right-click on the image, select Save Display and save the image with a new name.

### Image Analysis (Save a Z section Image as 2D file)



Save the image in step 3 or 5

- 6. Click on the 🛅 button.
- 7. A 2D View-(file name) image is created.

 Saving the image: Right-click on the Image Icon displayed on the Data Manager and select Save As to save the image. (Save as type "xml" is a file format specifically for the FV10-ASW software.)

#### ■Memo■

File formats specifically for the FV10-ASW

#### OIF format:

Creates "a folder that contains an image (16bit TIFF)" and "an accessory file," which cannot be opened separately from each other.

#### OIB format:

Creates the OIF format files in a single file, which is convenient for migration and other operations.

### Image Analysis (Inserting the Scale Bar)



- 1. Click on the button.
- 2. While left-clicking the image, drag and drop it at a certain point.

Change the size

3. While clicking the right or left handle, move the mouse from side to side.



Change the text size, color, style, etc.

4. Select Scale Bar and then right-click on Scale Bar to select Format Setting.

5. Change the setting in this window as required.

### Image Analysis (Rotating a Three-dimensional Image)



### Image Analysis (Saving an Image)



### Image Analysis (Rotating a Three-dimensional animation)



To save a rotation file as an animated image, create threedimensional images according to the following procedure.

For example, try to rotate an image by 180 degrees.



- 5. Click on the More button.
- 6. Click on the Angle rotation tab.
- 7. Select the rotation axis.
- 8. Enter the rotation angle.



- 9. Select AVI File and click on Create.
- 10. Enter a file name and click on Save.

### 2D Image Analysis (Edit the image color and contrast)



2.Edit contrast to drag 🛆 to left or right side, and another way to edit contrast is entering value on

3. Min and Max value are changed and contrast of image is edited.

"Max" and "Min" (Max4095, Min0)



### 2D Image Analysis (the image of Z section)



1. Click i and select i again, then Projection image is shown on 2D View after getting XYZ image.

2. Click 🔳 and select 📃.

3. The images of Z section is shown on X axis and Y axis. According to Move to left or right side on X axis and to move to ups and down on Y axis, be able to show image of Z section each position.

- 4. The image of Z section on Y axis.
- 5. The image of Z section on X axis.

### 2D Image Analysis (Intensity Profile of each Z sections )



### 2D Image Analysis (Measure)



1. Enclose interesting regions by ROI

Line on interesting positions by ROI

2. Click 🔯 "measure".

| Study         C173-303         C173-303         C173-303         C173-303           Necessel.pos:0           Non-ter Cpos:10, Tposs0L pos:01           ROI         Center X         Center Y         Area         Perimeter Integration         Average         Max         Min         Range         Studbev         Studbev         CHS2         CHS2 <th><u>CenterX</u><br/><u>CenterY</u><br/><u>Area</u></th> <th>ROI No. 5 Stati<br/>150.780 Inte<br/>79.732 <u>Ave</u><br/>6120.813 <u>Max</u></th> <th>grates 1211<br/>rage</th> <th>878548.000<br/>1244.509<br/>4095.000</th> <th><u>54771708.00</u><br/>559.27<br/>3227.00</th> <th>7</th> <th></th> <th>-</th> <th>-</th> <th></th> <th>on of<br/>urer</th> <th>-</th> <th>ROI<br/>t.</th> <th>is ca</th> <th>lcula</th> <th>ated</th> <th>on</th> <th></th> <th>Current<br/>Zpos :10<br/>Tpos :0<br/>Lpos :0</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>CenterX</u><br><u>CenterY</u><br><u>Area</u> | ROI No. 5 Stati<br>150.780 Inte<br>79.732 <u>Ave</u><br>6120.813 <u>Max</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | grates 1211<br>rage | 878548.000<br>1244.509<br>4095.000 | <u>54771708.00</u><br>559.27<br>3227.00 | 7           |          | -        | -       |          | on of<br>urer | -        | ROI<br>t.   | is ca   | lcula    | ated   | on       |         | Current<br>Zpos :10<br>Tpos :0<br>Lpos :0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------|-----------------------------------------|-------------|----------|----------|---------|----------|---------------|----------|-------------|---------|----------|--------|----------|---------|-------------------------------------------|
| Studiev         2175.309         1185/092           Measurement.           Non-text Table (Zpos:t0, Tpos:t0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ge                  | 3999,000                           | 3186,00                                 | 0           | is       |          |         |          |               |          |             |         |          |        |          |         | Áđđ                                       |
| ROI         centerX         CenterY         Area         Perimeter         Integration         Average         Max         Min         Range         StdDev         3tdDev         itegration         Average         Max         Min         Range         StdDev         itegration         Average         Max         Min         Range </th <th>N</th> <th>/least</th> <th></th> <th>2175.309</th> <th>Reg</th> <th>ion 1</th> <th></th> <th>l⊽ Auto</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N                                               | /least                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     | 2175.309                           | Reg                                     | ion 1       |          |          |         |          |               |          |             |         |          |        |          |         | l⊽ Auto                                   |
| Imm         Imm         Imm         Imm         Imm         CHS1         CHS1         CHS1         CHS1         CHS1         CHS1         CHS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Area                               | Perimeter                               | Integration | Average  | Мах      | Min     | Range    | StdDev        | 3StdDev  | Integration | Average | Max      | Min    | Range    | StdDev  | 3StdDex                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                    |                                         |             |          |          | 107.27V |          |               |          |             |         |          |        |          |         |                                           |
| <ul> <li>51,900</li> <li>\$7,103</li> <li>\$27,425</li> <li>\$27,3215</li> <li>\$27,3216</li> <li>\$27,215</li> <li>\$27,3215</li> <li>\$27,3216</li> <li>\$27,215</li> <li>\$27,3215</li> <li>\$27,3215</li> <li>\$27,3215</li> <li>\$27,3215</li> <li>\$27,3215</li> <li>\$27,3215</li> <li>\$27,3216</li> <li>\$21,1246</li> <li>\$386,2020</li> <li>\$39,706</li> <li>\$386,000</li> <li>\$30,000</li> <li>\$30,000</li> <li>\$357,3000</li> <li>\$57,505</li> <li>\$197,2967</li> <li>\$7830740,000</li> <li>\$645,072</li> <li>\$3830,000</li> <li>\$25,000</li> <li>\$3355,000</li> <li>\$21,513</li> <li>\$11,524</li> <li>\$12,531</li> <li>\$13,258</li> <li>\$1878548,000</li> <li>\$1244,509</li> <li>\$4095,000</li> <li>\$6,000</li> <li>\$399,000</li> <li>\$25,103</li> <li>\$2175,309</li> <li>\$4771708,000</li> <li>\$55,277</li> <li>\$227,000</li> <li>\$41,000</li> <li>\$386,000</li> <li>\$39,334</li> <li>\$131,45</li> <li>\$55,55</li> <li>\$5,55</li> <li< td=""><td>1</td><td>and the second s</td><td></td><td></td><td>14 SV 3</td><td>1</td><td></td><td></td><td></td><td></td><td></td><td>2130.783</td><td>1 2002 1</td><td></td><td></td><td></td><td></td><td></td><td>1567.554</td></li<></ul> | 1                                               | and the second s |                     |                                    | 14 SV 3                                 | 1           |          |          |         |          |               | 2130.783 | 1 2002 1    |         |          |        |          |         | 1567.554                                  |
| 4       80.180       111.524       1732.433       211.246       1386227.000       879.766       3836.000       83.000       3753.000       657.656       1972.967       7880740.000       645.072       3380.000       25.000       3355.000       523.061       1569.1         150.780       79.732       6120.813       313.258       1878548.000       1244.509       4095.000       96.000       3999.000       725.103       2175.309       4771708.000       559.277       3227.000       41.000       3186.000       439.334       1318.0         mt       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 <td>_ 2</td> <td>112.522</td> <td>53.402</td> <td>1470.188</td> <td>194.764</td> <td>0620457.000</td> <td>1301.724</td> <td>4095.000</td> <td>97.000</td> <td>3998.000</td> <td>883.602</td> <td>2650.807</td> <td>7837013.000</td> <td>758.280</td> <td>3468.000</td> <td>28.000</td> <td>3440.000</td> <td>561.877</td> <td>1685.63</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ 2                                             | 112.522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53.402              | 1470.188                           | 194.764                                 | 0620457.000 | 1301.724 | 4095.000 | 97.000  | 3998.000 | 883.602       | 2650.807 | 7837013.000 | 758.280 | 3468.000 | 28.000 | 3440.000 | 561.877 | 1685.63                                   |
| 4       80.180       111.524       1732.433       211.246       1386227.000       879.766       3836.000       83.000       3753.000       657.656       1972.967       7880740.000       645.072       3380.000       25.000       3355.000       523.061       1569.1         150.780       79.732       6120.813       313.258       1878548.000       1244.509       4095.000       96.000       3999.000       725.103       2175.309       4771708.000       559.277       3227.000       41.000       3186.000       439.334       1318.0         mt       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5       5 <td>53</td> <td>51.900</td> <td>87.103</td> <td>3274.688</td> <td>273.215</td> <td>2573667.000</td> <td>1003.410</td> <td>4095.000</td> <td>94.000</td> <td>4001.000</td> <td>700.397</td> <td>2101.192</td> <td>9839166.000</td> <td>569.504</td> <td>3415.000</td> <td>53.000</td> <td>3362.000</td> <td>443.623</td> <td>1330.86</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 53                                              | 51.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 87.103              | 3274.688                           | 273.215                                 | 2573667.000 | 1003.410 | 4095.000 | 94.000  | 4001.000 | 700.397       | 2101.192 | 9839166.000 | 569.504 | 3415.000 | 53.000 | 3362.000 | 443.623 | 1330.86                                   |
| 5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                    |                                         |             |          |          |         |          |               |          |             |         |          |        |          |         |                                           |

### 2D Image Analysis (Line Intensity Profile on the 2D image )



Line on the 2D image by ROI
 Click (Intensity Profile) "Intensity Profile"
 "Intensity Profile" on the line is shown as intensity graph .

### 2D Image Analysis (Histogram)



- 1. Enclose an interested area by ROI.
- 2. Click IIII "Histogram"
- 3. "Histogram" window is shown as a graph, frequency of intensity of each pixels is plotted on the area enclosed by ROI.

### 2D Image Analysis (Line Series Analysis)



- 1. Line on the interesting region.
- 2. Click utility "Line Series Analysis"
- 3. Intensity of Z position/ time on the line is shown as a graph .

### 2D Image Analysis (Co-localization)





- 1. Enclose an interesting region by ROI.
- 2. Click 🛄
- 3. Select Threshold from Annotation Mode.
- According to move Thresholds of X,Y axis to right and left ,ups and down (Enclose red color X,Y axis), Colocalization result between 2ch is changed .

Information of Co-localization is listed under the scatter plot.

### **Closing the System**



- 1. Exit the FV10-ASW software by selecting File/Exit.
- 2. Exit the Windows.
- (1) Select Start/Shut Down.
- (2) On the Shut Down Window, select Shut Down and click on OK.
- Turn the laser OFF.
   (Turn the key switch to the OFF position.)
- 3-1. LD559nm OFF
- 3-2. Multi Ar (458 nm, 488 nm, 514 nm) OFF
- 3-3. HeNe (G) (543 nm) OFF
- 4. Turn the mercury burner power OFF.



|        | <b>OLYMPUS CORPORATION</b><br>Shinjuku Monolith, 3-1, Nishi Shinjuku 2-chome,Shinjuku-ku, Tokyo, Japan |
|--------|--------------------------------------------------------------------------------------------------------|
| EC REP | OLYMPUS LIFE SCIENCE EUROPA GMBH                                                                       |
| EC REP | Postfach 10 49 08, 20034, Hamburg, Germany                                                             |
|        | OLYMPUS AMERICA INC.                                                                                   |
|        | 3500 Corporate Parkway, P.O. Box 610, Center Valley, PA 18034-0610, U.S.A.                             |
|        | OLYMPUS SINGAPORE PTE LTD                                                                              |
|        | 491B River Valley Road #12-01/04 Valley Point Office Tower, Singapore 248373                           |
|        | OLYMPUS AUSTRALIA PTY LTD                                                                              |
|        | 31 Gilby Road, Mount Waverley, Victoria 3149 Australia                                                 |
|        | OLYMPUS LATIN AMÉRICA, INC.                                                                            |
|        | 5301 Blue Lagoon Drive, Suite 290 Miami, FL 33126, U.S.A.                                              |
|        | •                                                                                                      |
|        |                                                                                                        |
|        |                                                                                                        |
|        |                                                                                                        |