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Abstract—Layer 1 weakly coupled free fermionic heterotic 

string models of orders 1-5 were systematically generated. 

Among these models 36 contained the following grand unification 

theory groups: 1 Pati-Salam, 3    and 32 SO(10). The number of 

spacetime supersymmetries,  , of the models were also found 

with   {     } for even ordered layer 1 models and   {   } 
for odd ordered layer 1 models. Finally, the general layer 1 

models were compared with gauge models. 

 
Index Terms—String Theory, Systematic Model Building, Low 

Energy Effective Field Theory. 

 

I. INTRODUCTION 

 

TRING theory is not yet a single theory in itself but an 

umbrella term for theoretical models using strings as the 

most fundamental matter. There are postulated to be on the 

order of      different configurations within the String 

Theory Landscape [1][2][10].  

Other theories are capable of providing quantum theories of 

three of the fundamental forces of nature, namely the strong, 

weak and electromagnetic force, but lack the necessary tools 

for a reasonable quantum theory of gravity. In string theories 

not only can quantum theories of the strong, weak and 

electromagnetic forces be found, but the graviton (the 

quantum of the gravitational field) appears as a vibrational 

mode of closed strings; therefore allowing for a quantum 

theory of all four of the fundamental forces. This opens up the 

possibility of providing a single unique unified theory of all 
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fundamental interactions which string theorists strive to find 

[3].  

The weakly coupled free fermionic heterotic string 

(WCFFHS) formalism has been successful in generating 

promising phenomenological models [15-24]. This 

mathematical structure is also convenient for building 

systematic, computer automated models [4]. Therefore this 

area of string theory is of interest to study further. 

 

A. Layer 1 WCFFHS Model Building 

 

The WCFFHS formalism has a radius of theory, R, 

such that R =1 with a vanishing coupling constant       

g << 1, and is built upon a 2-torus world sheet with 

non-interacting fermions. Left movers are the modes 

associated with the 10-dimensional (half-integer) 

fermionic superstrings whose vibrational modes 

describe matter. Right movers are the modes 

associated with (integer) bosonic strings propagating in 

26-dimensions whose vibrational modes describe the 

force carriers. The WCFFHS structure consists of 

closed strings and thus has disjoint sets of left and right 

moving modes. 

 Two inputs are specified for constructing layer 1 

WCFFHS models, namely the basis vector set and the 

GSO coefficient matrix. A number of modular 

invariance constraints are imposed on these inputs in 

order to ensure quantum mechanical consistencies. The 

basis vector set fully defines the compactification of 

space by specifying the phase gained by parallel 

transporting fermion modes around non-contractible 

loops on the worldsheet [4].  

Basis vector set is defined as: 

   

   { ⃑ | ⃑               }                      (1) 

 

For layer 1 models the basis vector sets consist of the 

all-periodic  ⃑ 
   ⟨   |   ⟩, the SUSY basis 

vector  ⃑⃑⃑
 ⃑⃑
   ⟨        |   ⟩  and one additional 
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basis vector. The number of possible values of phases 

for the additional basis vector, called the order,  , of 

that basis vector also needs to be specified.  

Sectors  ⃑ are built by taking all linear combinations 

of basis vectors in the inputted set and from these 

massless states are built. After projecting away any 

unphysical states using the inputted GSO coefficient 

matrix gauge groups and the number of spacetime 

supersymmetries are found and from these the force 

and matter content is determined [4]. 

 

1) Modular Invariance Constraints 

 

Letting    be the order of basis vector   
 

 and 

              . The following modular 

invariance constraints must be met by the inputted 

basis vector in order to ensure quantum mechanical 

consistency by ensuring the physics remains the 

same if your parameters are rotated 360 degrees 

along a non-contractible loop on the world sheet: 

 

    
                       if    even        (2) 

    
          4             if    odd         (3) 

     
    

                                      (4) 

The second input, namely the GSO coefficient 

matrix with elements     used in GSO projections in 

one of the final steps of the model building process 

has the following constraints: 

 

                                                         (5)                       

          
 

 
 ⃗ 

 
  ⃗ 

 
                            (6) 

          
 

 
 ⃗ 

 
 
                              (7) 

 

Where    is 0 for bosonic basis vectors and 1 for 

fermionic basis vectors. 

 

2) Building Sectors and Massless States 

 

The geometry of the model is built by taking 

linear combinations of the basis vectors, these form 

the sectors { ⃑}. Sector describe the transformation 

of fermions around non-contractible loops on the 

world sheet [10]. 

 Letting     be an integer constrained by  

     {            },  

sectors are constructed using  

                                 ⃑   ∑     ⃑ 
 

                    (8)   

Massless states are built using the relation: 

 

                             ⃑⃗   
 

 
 ⃗   ⃗                       (9) 

Where  ⃗, the fermion number operator [10], is a 

vector of all combinations of      such that the 

state  ⃑⃗ is massless according to the conditions:  

 

                                   ⃑⃗ 
                              (10a) 

 

                                   ⃑⃗ 
                              (10b) 

  

 

 

3) GSO Projection 

 

 Let  ⃑⃗ ⃗⃑⃑   be the state generated from sector  ⃗,    

be the coefficients on the basis vector set used to 

construct  ⃗ and    be 0 for bosonic basis vectors and 

1 for fermionic basis vectors [3]. In the WCFFHS 

formalism the GSO projection is given by: 
 

              ⃑ 
    ⃑⃗ ⃗⃑⃑   ∑                      (11) 

 

The GSO Projection removes all unphysical states 

such as the state associated with tachyons.  

 

 

B. Grand Unification Theory Groups 

 

Grand unification theories (GUTs) are theories in 

which at sufficiently high energies the strong nuclear, 

weak nuclear and electromagnetic forces are joined 

into one unified force [1]. GUT groups, which are 

gauge group products associated with GUTs include 

the flipped SU(5)⨂U(1), SO(10) [5][6], 
SU(4)⨂SU(2)⨂SU(2) (Pati-Salam) [5], 

SU(3)⨂SU(2)⨂SU(2) (left-right symmetric) [7],   , 
and the well-known 1-2-3 symmetry group of the 
standard model: SU(3)⨂SU(2)⨂U(1) [6]. Models 
containing these gauge group products as a 
subgroup are more likely to have 
phenomenologically realistic results when further 
developed. 

 

C. Spacetime Supersymmetries 

 

The number of spacetime supersymmetries (ST 

SUSYs),   specifies the number of distinct copies of 

supersymmetry generators [7]. Thus the number of ST 

SUSYs distinguishes the number of fermion 

superpartners for each boson and the number of boson 

superpartners for each fermion.  

The number of ST SUSYs can be found by counting 

the number of gravitinos. On our worldsheet gravitinos 

are of the form: 

 

                              ⟨
 

 

 

 
(  

 

 
   )

 

|   ⟩               (12) 

 
Since every element in the real basis vector has to form a 

pair with another element the 64 possible gravitinos 

narrow down to 8 possibilities [8]. As is clear from their 

form, gravitinos come from the sector generated by the 
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SUSY basis vector. Therefore, in the GSO projection, the 

dot product on the left-hand side of equation 11 will be 

between the gravitino state vector and the SUSY sector. 

This also means that the coefficient    on the right-hand 

side of equation 11 will be 0 for     and     and 1 

for    . Since the elements of the coefficient matrix are 

either 0 or 1, this implies that the dot product between the 

gravitino state vector and the SUSY sector must either be 

congruent to 0 or 1 mod 2. 

Certain values of    are more likely to produce results 

that are more phenomenologically realistic. Also some 

values of   require more arduous calculations in order to 

find values such as the vacuum expectation values and 

the results of SUSY breaking. Therefore   values for 

each model are of interest for us to find. 
 

D. Gauge Models 

 

A gauge model is defined as follows: 

 

A model is a gauge model if it can be built 

from a set of basis vector in which every basis  

vector beyond the all-periodic and SUSY basis 

  vector is bosonic, that is of the form ⟨   | ⃑  ⟩, 
within the free fermionic construction. [10-14]  

 

Note that the number of elements in the basis vector 

is halved due to using a complex basis. Gauge models 

have the potential to develop a new perspective for 

systematic model building where the gauge model is 

used as a foundation to build mode intricate models 

upon [10]. Since the additional basis vector used to 

construct gauge models has more constraints it is 

reasonable to expect every gauge model to be found 

within the set of general models. 

 

II. RESULTS 

 

A. Statistics for Layer 1 Models 

 

Statistics were found for all unique layer 1 models 

of order 1-5 in order to determine which models are 

likely to be phenomenologically realistic and therefore 

of interest for further development. 

 

A model is considered unique if no other  

model has been previously generated  

with both the same gauge group and  

number of space-time supersymmetries [10]. 

 

 

 

 

 

 

1) Order 2  

 

Models were generated using an additional basis 

vector of order 2. There were 36 unique models 

found among 145320 consistent models as seen in 

Table I. 

 

 

 

 

SO(10) was the only GUT group found among 

order 2 layer 1 models. SO(10) was found in 3 

unique models as shown in Table II. 

 

 

 
 

 

The number of ST SUSYs were also found for 

each unique model. There were 15 unique models 

with     ST SUSYs, 8 unique models with 

    ST SUSYs and 13 unique models with 

    ST SUSYs as seen in Fig 1.  
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2) Order 3 

 

Models were generated using an additional basis 

vector of order 3. There were 12 unique models 

found among 47376 consistent models as seen in 

Table I. 

No GUT groups were found among order 3 layer 

1 models.  

The number of ST SUSYs were also found for 

each unique model. There were 6 unique models 

with     ST SUSYs and 6 unique models with 

    ST SUSYs as seen in Fig 2.  

 

 
 

 

 

3) Order 4 

 

Models were generated using an additional basis 

vector of order 4. There were 199 unique models 

found among 13896576 consistent models as seen in 

Table I. 

  , SO(10) and the Pati-Salam GUT groups were 

found among order 4 layer 1 models. SO(10) was 

found in 25 unique models while only one    and 

Pati-Salam GUT group were found as shown in 

Table II. 

The number of ST SUSYs were also found for 

each unique model. There were 118 unique models 

with     ST SUSYs, 35 unique models with 

    ST SUSYs and 46 unique models with 

    ST SUSYs as seen in Fig 3.  

 

 

 
 

 

 

4) Order 5 

 

Models were generated using an additional basis 

vector of order 5. There were 36 unique models 

found among 2857428 consistent models as seen in 

Table I. 

   and SO(10) GUT groups were found among 

order 5 layer 1 models. SO(10) was found in 4 

unique models and    was found in 2 as shown in 

Table II. 

The number of ST SUSYs were also found for 

each unique model. There were 18 unique models 

with     ST SUSYs and 18 unique models with 

    ST SUSYs as seen in Fig 4.  
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III. CONCLUSION 

 

Among 283 unique layer 1 models generated for orders 1-5, 

36 contained GUT groups. There were 1 Pati-Salam, 3    and 

32 SO(10) found in total. This leaves only 36 out of 283 

models as phenomenologically interesting and therefore only 

these 36 will be developed further. In future work vacuum 

expectation values and the results of SUSY breaking will be 

found for a fully developed model. 

The number of ST SUSYs will be used in these 

computations. It has been found that the dot product between 

the gravitino state vector and the SUSY sector must either be 

congruent to 0 or 1 mod 2 due to the GSO projection shown in 

equation 11. Therefore it is reasonable that no layer 1 models 

were found to have     or     ST SUSYs. It is also due 

to this constrain placed on the gravitinos that both sets of odd 

ordered layer 1 models contained no models with     ST 

SUSYs because any additional basis vector that met the 

modular invariance constraints produced gravitinos which 

were removed by the GSO projection. 

The general models were compared to the gauge models 

which were built using different methods placed on them for 

efficiency. This comparison revealed a flaw in the gauge 

model building program which, when trying to remove 

redundant models was removing models that contained the 

same physics as another while having different gauge groups. 

For example among the following models (note that the gauge 

models are built using a complex basis) 

 

                                   ⟨   |       ⟩                           (13a) 

 

                                    ⟨    |     ⟩                            (13b)           
 

 Equation 13b would be removed as being a redundancy of 

equation 13a, generating an incomplete set of gauge models. 
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