1) Let M and N be normal subgroups of G such that $G = MN$. Prove that $G/(M \cap N) \cong (G/M) \times (G/N)$.

2) Let G be a group with $|G| = pqr$ where p, q, r are primes with $p < q < r$. Prove that G has a nontrivial normal subgroup.

3) Solve the simultaneous system of congruences

\[x \equiv 1 \mod 8 \quad x \equiv 2 \mod 25 \quad x \equiv 3 \mod 81 . \]

4) Show that $p(x) = x^3 + 9x + 6$ is irreducible in $\mathbb{Q}[x]$. Let θ be a root of $p(x)$. Find the inverse of $1 + \theta$ in $\mathbb{Q}(\theta)$.

5) Let K be a field and V a vector space over K of dimension n. Let $A \in \text{End}_K(V)$. Show the following are equivalent:
 a) the minimal polynomial of A is the same as the characteristic polynomial of A.
 b) there exists a vector $v \in V$ such that $v, Av, \ldots, A^{n-1}v$ is a basis of V.

6) Let K be the splitting field of the polynomial $x^4 - 2$ over \mathbb{Q} and let G be the Galois group of K over \mathbb{Q}.
 a) Describe G.
 b) Describe all subfields of K containing \mathbb{Q}.