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Abstract—We have approximately solved the problem of 

finding the equilibrium charge distribution on an aggregate of 

conducting dust grains in a dusty plasma. Using the assumptions 

that the grains are spherical and have spherically symmetric 

charge distributions regardless of the presence of other charged 

grains, we designed a program to calculate the amount of charge 

that each grain in an aggregate should have, given an initial 

amount of total charge present on the aggregate. Our results 

agree with theoretical predictions of how the charge distribution 

on a conducting aggregate should behave; that is, the charge 

distribution is biased toward those aggregates that lie at the 

extreme points on the aggregate. 

 
Index Terms—Aggregate, Charge Distribution, Conducting, 

Dusty Plasma. 

 

I. INTRODUCTION 

HEORETICAL research concerning dusty plasmas began 

to receive a large amount of attention in the 1980s, when 

it was discovered that the structure of Saturn’s rings could not 

be explained as a result of simple gravitational interactions. 

Dusty plasma research has since become relevant to several 

other areas, such as the production of silicon wafers and the 

formation of planetesimals. Dusty plasmas commonly possess 

vastly different properties from ordinary plasmas. The 

immersed dust particles tend to become charged by various 

means and form aggregates, causing unusual phenomena to be 

exhibited, such as otherwise impossible waves and variations 

in the local density of the plasma. 

In this paper, we concern ourselves with our research on the 

distribution of charge on an aggregate of conducting dust 

grains. The charge distribution of an aggregate in a dusty 

plasma determines the electric dipole moment of the 

aggregate, and therefore affects the torque that the aggregate 

experiences as it travels through the plasma. This torque 

inevitably determines the behavior of collisions between this 
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aggregate and other aggregates in the plasma, and so the 

charge distribution on an aggregate plays in important role in 

determining the dynamics of how aggregates collide, and 

therefore also plays an important role in understanding the 

mechanisms involved in the formation of aggregates from 

collisions of other aggregates [1], [2]. The coagulation rate 

and fractal dimensions of aggregates formed in a dust plasma 

both depend on how the charge is distributed on the irregularly 

shaped aggregates. [3] 

A plasma containing conducting dust grains is a 

significantly different situation from aggregates of non-

conducting dust grains, because in conducting aggregates the 

charge flows freely in an effort to equalize the potential over 

the surface of the aggregate. We have approximately solved 

the problem of finding the charge distribution on a conducting 

aggregate of arbitrary shape and size in electrostatic 

equilibrium using numerical methods. The results of this 

research will be the focus of this paper. 

 

II. METHODS 

A. Preliminary Assumptions and Approximations 

In this approximate solution, we operated under the 

assumption that the dust grains were spherical in shape and 

had a common radius. We also assumed that the charge on 

each dust grain was evenly distributed among the surface of 

that particular grain in a spherically symmetric manner. In 

reality, it is not true that the charge on each grain will be 

spherically symmetric, because this sort of charge distribution 

will not equalize the potential on the surface of the entire 

aggregate. 

Even so, we expect that the effects of variations in the local 

charge on a grain will not cause a significant difference 

between our simulations and the behavior of a physical 

aggregate. As for the assumption that the grains must be 

equally sized spheres, we consider simulations with ellipsoidal 

and otherwise non-spherical dust grains, as well as with grains 

of heterogeneous sizes, to be topics of future research. 

B. The Pincus Algorithm 

We began by producing simulated aggregates using the 

method described by Lorin Matthews and Truell Hyde [1]. 

These aggregates were simple collections of spheres in contact 

with each other in an arrangement emulating the structure of 
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real aggregates. Each of these spheres was given an initial 

charge. We realized from first principles of electromagnetic 

theory that the charge on a conducting aggregate of this sort 

must redistribute itself in such a manner that the potential may 

be equalized throughout the surface of the aggregate.  

Suppose then, that we have simulated an aggregate 

composed of  spherical conducting grains. Suppose also that 

we select  reference points on the surface of each grain (we 

selected these reference points in a spherically symmetric 

manner, though it is conceivable that they could be selected to 

be at random locations around the spheres). If this aggregate is 

in electrostatic equilibrium, then the reference points should 

be at a common potential. As such, the sum of the absolute 

values of the potential differences between each pair of these 

points should be zero. Therefore, we desired an algorithm to 

minimize this sum as a function of the charge distribution on 

the aggregate. 

To find the charge distribution at which this sum is at its 

lowest possible value, we implemented the Monte Carlo 

method described by Martin Pincus [4]. Consider a real-

valued, continuous function , where 

, and a closed, bounded region . 

Suppose that there exists a unique point  such that 

. In that case, the algorithm described in 

the aforementioned paper can be used to approximately find 

this point . As it is, the sum that we referred to in the 

previous paragraph is a continuous and real valued function of 

the charges on the grains, and we know that a unique 

minimizing point of the sum must exist, since the equilibrium 

charge distribution is unique. 

C. The sum function  

We begin by introducing some notation that we will use 

throughout this paper. Let us assume that our aggregate is 

composed of dust grains numbered . For any 

, the reference points on grain  will be denoted 

as . We denote the position vector of the center of 

mass of grain  as . We denote the position vector of the th 

point on grain  as . Then the potential of the th point on 

grain  as a function of the grain charges, which we will 

denote , is given by: 

 

 

 

We know that the potential must take this form, by the 

principle of superposition and by the corollary to Gauss’ Law 

that implies that the electric field due to a spherical charge 

distribution is of the same form as that of a point charge. 

That said, the function that we must minimize, the sum of 

the absolute values of the potential differences between the 

pairs of reference points on the aggregate, can be expressed as 

follows. Let there be some injective and surjective function 

, 

such that . Then the function that 

we wish to minimize can be given by 

 

 

 

We know that this is the sum of the absolute values of the 

potential differences between the points on the aggregate 

because all of the terms of this sum are positive, by definition 

of . We note that this function can be simplified: 

 

 

and further, 

 

 

 

This, then, is the form of the function that we seek to 

minimize using the Pincus Algorithm. 

D. The state space 

This brings us to a new question: what will be this closed 

and bounded domain ? The answer to this question lies 

in the fact that the number of possible charge distributions of 

an aggregate with a given charge is finite, because charges are 

discrete. If we had assumed that any fraction of a Coulomb 

could be transferred between grains, then the same condition 

would not hold, since then the number of possible charge 

distributions would, indeed, be infinite. Knowing, then, that 

the set of all possible charge distributions, which we will 

denote by  (where  is the number of grains in the 

aggregate and  is the number of elementary charges in the 

aggregate), is finite, we considered that we may use it as our 

state space . Note that, strictly speaking,  is a set 

which is the output of a function; it is defined rigorously by 

the function  such that 

 

 

 

This approach of using  is not possible for 

arbitrary cases. Consider that, for an aggregate with  

electrons distributed among  dust grains, the size of  is 
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(Note that this equation is the answer to the combinatorial 

problem of “if I have  non-distinct apples and  barrels of 

infinite volume, in how many different ways can I distribute 

the apples among some or all of the barrels?” [5]) It is typical 

for us to have about  electrons on each grain. Suppose 

then, that we have an aggregate of three dust grains with that 

amount of charge initially present on each grain. In that case, 

. Already, this number is quite large for 

a modern computer to handle. If we then consider aggregates 

of more grains than just three, we see that the situation quickly 

goes out of control. 

It was necessary, therefore, for us to find a different method 

of using a state space of possible charge distributions. Rather 

than considering all statistical possibilities, we chose instead 

to consider  to be the set of all physically sensible charge 

distributions. What charge distribution, then, is physically 

sensible? Since the aggregate is composed of conducting 

material, it is sensible to assume that the charge will be 

concentrated at those grains on the edges of the aggregate. If 

this were not true, then the charge would be distributed in such 

a way that the electrons are uncomfortably juxtaposed on 

interior grains while also repelling each other. The charges, 

then, will tend to spread out as much as possible. Since most 

of the members of  do not satisfy this rather particular 

condition, they can be excluded as obviously not the 

equilibrium charge distribution and therefore not to be 

considered in . 

But there are subtleties to consider here; aggregates are 

discrete structures formed from finite numbers of dust grains 

and therefore cannot be thought of in the same way as metallic 

solids, where the edge is clearly defined. In fact, defining what 

is meant by the term “edge” in a discrete structure of spherical 

dust grains is greatly difficult. In addition, while most of the 

charge will be concentrated around the edge grains, it is not 

prudent to assume in the general case that the interior grains 

will have no charge at all; some grains behave like edges more 

than others do, and the charge distribution becomes biased 

accordingly. We have introduced the term “edge of the 

aggregate” in this paper for the sole purpose of examining 

results provided by the program, and we acknowledge that the 

term possesses some degree of subjectivity. 

Therefore, since we cannot so easily determine what to do 

about large aggregates from first principles, we considered 

aggregates of ten or less grains first. If we assume that the 

elementary charge is three hundred electron charges (that is, 

that electrons move in groups of three hundred), then for an 

aggregate of three dust grains and ten thousand electrons per 

grain, the number of possible charge distributions swiftly 

drops from  to a reasonable . This makes the 

cardinality of our state space suddenly reasonable and gives a 

rather small error in the charge on any particular grain. (This 

error will be discussed in detail later.) Therefore, with small 

aggregates, it is possible for us to use  as long as 

we assume that the elementary charge is some integer number 

 of electron charges. For the rest of this paper, I will call 

the effective elementary charge, , “the charge on one 

aplectron” (the neologism is a portmanteau of “approximate” 

and “electron”). For the rest of this paper,  will denote the 

number of aplectrons present in an aggregate. 

We simulated aggregates of ten or less grains in hopes that 

we would notice a trend in the data that would give us some 

insight about larger aggregates. But before discussing the 

results of these simulations, we turn our attention to a subtlety 

pertaining to the previous paragraph. Our computers can 

comfortably handle generating state spaces with cardinalities 

of up to about thirty million for ten aggregates. But if we make 

the same assumption as before, that is, that , and 

attempt to simulate an aggregate of nine dust grains with  

electrons per grain, we will have  

different charge distributions. But if , then the 

 is the much more reasonable  (we have 

used  rather than the actual value of  because we must 

have that the number of aplectrons be integral). Therefore, we 

designed the program so that the amount of charge of one 

aplectron must be determined dynamically based on the 

number of electrons present in the aggregate. One may say 

that it may be sufficient to let  for all aggregates, but 

that would provide blatantly inaccurate results for aggregates 

that have, for example, only  electrons on them, since 

the error in the charge on each monomer would be so great. 

 

III. RESULTS 

At this time, our results are not complete; our future work 

on this project will provide much more accurate and reliable 

results than we currently have. Our current results are impeded 

by some limitations that have resulted from the amount of 

time allotted to this NSF-funded program. Therefore, better 

results are forthcoming. A sample of our preliminary results is 

presented in the form of the effect of the program on an 

aggregate of six dust grains. 

First of all, in future work, we intend to dynamically 

determine the number of aplectrons based on the number of 

electrons in the aggregate so that the cardinality of the state 

space will be close to . In these preliminary 

simulations, we did not implement this. It turns out that most 

dust grains contain several thousand less than ten thousand 

electrons; no aggregate that we have previously simulated has 

contained a dust grain with ten thousand or more electrons in 

the initial state (although many grains have had numbers of 

electrons that are rather close to ten thousand). In fact, we 

have considered that the grains will have approximately ten 

thousand electrons each as a worst-case scenario in order to 

calculate upper bounds on the cardinalities of the state space. 

Since many of the grains did not have numbers of electrons 

that we close to ten thousand, it turned out that the aggregate 

had many less electrons than we had predicted. As a result, we 

could not predict, a priori, what the size of an aplectron 

should be. It happened that  provided somewhat 

accurate results, so that was used to produce the results 

featured below. 

Second, the cardinality of the state space was not close to 

, but rather was chosen (for reasons involving the 
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time required for the program to run) to be exactly . In 

light of the fact that  in this simulation, this state space, 

then, is a rather small subset of the state space that would have 

been appropriate for an actual simulation. Indeed, the state 

space that would have been appropriate for this number of 

aplectrons with this many dust grains may even be too large 

for a modern computer to handle, in consideration of how 

quickly the function displayed in equation  rises as the 

number of dust grains is changed. (For the number of dust 

grains in the aggregate will inevitably change the number of 

electrons present in the entire aggregate. Our previous 

assumption that there are about  electrons on each grain 

may have been inappropriate in the context of an actual 

simulation, and so  is not correct, but that does not 

mean that  and  are mutually exclusive, or even that their 

relationship is not approximately linear.) 

The results are also dubious because of the calculus 

involved in the Pincus Algorithm. Notice in Martin Pincus’ 

paper [4] that a limit  must be taken for some 

variable . Of course this is not literally possible for a 

computer program to simulate with the sort of accuracy that is 

involved in calculus. Yet, the fact that our  is finite is not a 

significant problem; any computational simulation will have 

this issue, and it is not a source of concern for us. Rather, the 

issue is brought into light by the finiteness of . We used a 

logical “for loop” in our program in order to simulate this 

limit; we did the computation with one value of , and then 

did it again with a large value, and so on, until  became very 

large. But there is an exception to this in our program; if the 

same charge distribution is found for thirty different values of 

 consecutively, then the program will not iterate  anymore, 

but rather, will select the charge distribution that was chosen 

thirty times, since it is obvious at that point that changing  

will have no effect on which charge distribution is chosen; it is 

large enough at that point. We have the following problem 

with this: the program, as it is currently written, iterates  only 

twice before finding the same charge distribution thirty times. 

This is uncomfortable, since it may mean that the program is 

choosing a charge distribution that provides a local minimum 

to the function in , rather than the absolute minimum of the 

function. 

Yet even in light of the mediocrity of these preliminary 

results in comparison to the results we will get from our future 

research, these preliminary results seem to support our original 

hypothesis. As previously noted, the charge should bias 

toward the “edge” of the aggregate; it ought to be concentrated 

on those grains that are at the extreme points of the aggregate. 

While we cannot define this precisely, the reader should have 

some concept of what is meant by the extreme points on the 

aggregate. It is clear from Figure 2 that the charge is obeying 

this prediction. We think that it is important to emphasize that 

the difference between the red and blue in Figure 1 is smaller 

than the difference between the red and blue in Figure 2, as 

can be seen from the difference in the scales. So while these 

results do hold some degree of promise in terms of our 

original hypothesis, they are only precursors to the much more 

accurate results that we will be collecting soon. 

 

 Fig. 2.  The charge distribution on an aggregate of conducting dust grains in 

electrostatic equilibrium, according to our current simulations. The scale is in 

terms of elementary charges. Note that the color scale is different from that 

in Figure 1. 

 
Fig. 1.  The charge distribution on an aggregate of conducting dust grains in 

the initial state. This is the charge distribution on the aggregate before the 

program acts on it. The scale is in terms of elementary charges. 
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