Gravity, Cosmology and Astroparticle Physics Group (GCAP) conducts research in classical and quantum gravity, and their applications to astrophysics and cosmology. Currently research topics include string inflation, current acceleration of the universe, the cosmological constant problem, brane worlds, black holes, their thermodynamics and formation, gravitational radiation, and nonlinear dynamics and critical phenomena at the threshold of black hole formation.
One of remarkable discoveries over the past few years in astronomical physics is that currently our universe is at accelerating expansion. In Einstein's theory of gravity, to account for such an expansion, a new component to the matter fields of the universe with a large negative pressure is needed, the socalled dark energy. Recent astronomical observations indicate that our universe is flat and currently consists of approximately 70% dark energy, 25% dark matter, and 5% baryon matter and radiation.
Another outstanding problem in gravitational and particle physics is the socalled hierarchy problem, that is, the large difference in magnitude between the Planck and electroweak scales. To solve this problem, braneworld scenarios were proposed in 1998/99, in which our fourdimensional universe is considered as a 3brane embedded in a high dimensional bulk spacetime. An important result of such investigations is that high dimensional black holes are predicted to be produced in the next generation of colliders in laboratories.

Einstein's general theory of gravity predicts the existence of black holes and gravitational waves. Black hole physics, including thermodynamics of black holes, and gravitational collapse and formation of black holes, have been one of the main focuses in gravitational physics in the last couple of decades. These studies have further been promoted by several newlybuilt gravitational wave detectors, such as LIGO (USA), GE600 (Germany & England), Virgo (Italy & France), and TAM300 (Japan).